A two-step gate-recess process combining high selective wet-etching and non-selective digital wet-etching techniques has been proposed for InAlAs/InGaAs InP-based high electron mobility transistors (HEMTs). High etc...A two-step gate-recess process combining high selective wet-etching and non-selective digital wet-etching techniques has been proposed for InAlAs/InGaAs InP-based high electron mobility transistors (HEMTs). High etching-selectivity ratio of InGaAs to InA1As material larger than 100 is achieved by using mixture solution of succinic acid and hydrogen peroxide (H202). Selective wet-etching is validated in the gate-recess process of InA1As/InGaAs InP-based HEMTs, which proceeds and auto- matically stops at the InA1As barrier layer. The non-selective digital wet-etching process is developed using a separately controlled oxidation/de-oxidation technique, and during each digital etching cycle 1.2 nm InAIAs material is removed. The two-step gate-recess etching technique has been successfully incorporated into device fabrication. Digital wet-etching is repeated for two cycles with about 3 nm InAIAs barrier layer being etched off. InP-based HEMTs have demonstrated superior extrinsic trans- conductance and RF characteristics to devices fabricated during only the selective gate-recess etching process because of the smaller gate to channel distance.展开更多
为了提高SOI(silicon on insulator)器件的击穿电压,同时降低器件的比导通电阻,提出一种槽栅槽源SOI LDMOS(lateral double-diffused metal oxide semiconductor)器件新结构.该结构采用了槽栅和槽源,在漂移区形成了纵向导电沟道和电子...为了提高SOI(silicon on insulator)器件的击穿电压,同时降低器件的比导通电阻,提出一种槽栅槽源SOI LDMOS(lateral double-diffused metal oxide semiconductor)器件新结构.该结构采用了槽栅和槽源,在漂移区形成了纵向导电沟道和电子积累层,使器件保持了较短的电流传导路径,同时扩展了电流在纵向的传导面积,显著降低了器件的比导通电阻.槽栅调制了漂移区电场,同时,纵向栅氧层承担了部分漏极电压,使器件击穿电压得到提高.借助2维数值仿真软件MEDICI详细分析了器件的击穿特性和导通电阻特性.仿真结果表明:在保证最高优值的条件下,该结构的击穿电压和比导通电阻与传统SOI LDMOS相比,分别提高和降低了8%和45%.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 61404115 and 61434006), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (No. 18IRTSTHN016), and the Development Fund for Outstanding Young Teachers in Zhengzhou University, China (No. 1521317004)
文摘A two-step gate-recess process combining high selective wet-etching and non-selective digital wet-etching techniques has been proposed for InAlAs/InGaAs InP-based high electron mobility transistors (HEMTs). High etching-selectivity ratio of InGaAs to InA1As material larger than 100 is achieved by using mixture solution of succinic acid and hydrogen peroxide (H202). Selective wet-etching is validated in the gate-recess process of InA1As/InGaAs InP-based HEMTs, which proceeds and auto- matically stops at the InA1As barrier layer. The non-selective digital wet-etching process is developed using a separately controlled oxidation/de-oxidation technique, and during each digital etching cycle 1.2 nm InAIAs material is removed. The two-step gate-recess etching technique has been successfully incorporated into device fabrication. Digital wet-etching is repeated for two cycles with about 3 nm InAIAs barrier layer being etched off. InP-based HEMTs have demonstrated superior extrinsic trans- conductance and RF characteristics to devices fabricated during only the selective gate-recess etching process because of the smaller gate to channel distance.
文摘为了提高SOI(silicon on insulator)器件的击穿电压,同时降低器件的比导通电阻,提出一种槽栅槽源SOI LDMOS(lateral double-diffused metal oxide semiconductor)器件新结构.该结构采用了槽栅和槽源,在漂移区形成了纵向导电沟道和电子积累层,使器件保持了较短的电流传导路径,同时扩展了电流在纵向的传导面积,显著降低了器件的比导通电阻.槽栅调制了漂移区电场,同时,纵向栅氧层承担了部分漏极电压,使器件击穿电压得到提高.借助2维数值仿真软件MEDICI详细分析了器件的击穿特性和导通电阻特性.仿真结果表明:在保证最高优值的条件下,该结构的击穿电压和比导通电阻与传统SOI LDMOS相比,分别提高和降低了8%和45%.