A novel PEO-based composite polymer electro-lyte by using organic-inorganic hybrid EO20PO70EO20-em- mesoporous silica (P123-em-SBA15) as the filler has been developed. The experiment results show that P123-em- SBA15 c...A novel PEO-based composite polymer electro-lyte by using organic-inorganic hybrid EO20PO70EO20-em- mesoporous silica (P123-em-SBA15) as the filler has been developed. The experiment results show that P123-em- SBA15 can enhance the lithium-ion transference number of the composite polymer electrolyte, which is induced by the special topology structure of P123 in P123-em-SBA15 hybrid. In addition, room temperature ionic conductivity of the composite polymer electrolyte can also be increased by about two orders of magnitude. The excellent lithium transport properties suggest that PEO-LiClO4-P123-em-SBA15 com-posite polymer electrolyte can be used as electrolyte materi-als for all solid-state rechargeable lithium polymer batteries.展开更多
hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) mat...hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, 1H-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and 11.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33 values) are 2.91×10 8esu and 6.14×10 8esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after 10h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.展开更多
文摘A novel PEO-based composite polymer electro-lyte by using organic-inorganic hybrid EO20PO70EO20-em- mesoporous silica (P123-em-SBA15) as the filler has been developed. The experiment results show that P123-em- SBA15 can enhance the lithium-ion transference number of the composite polymer electrolyte, which is induced by the special topology structure of P123 in P123-em-SBA15 hybrid. In addition, room temperature ionic conductivity of the composite polymer electrolyte can also be increased by about two orders of magnitude. The excellent lithium transport properties suggest that PEO-LiClO4-P123-em-SBA15 com-posite polymer electrolyte can be used as electrolyte materi-als for all solid-state rechargeable lithium polymer batteries.
基金Plan Project of Science and Technology of Guangzhou City (2002J1-C0061) The First Author: XI Hongxia(1968-)
文摘hydroxy-4-nitro azobenzene (NHA) and 4-amino-4-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, 1H-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and 11.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33 values) are 2.91×10 8esu and 6.14×10 8esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after 10h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.