针对蚁群算法在图像边缘提取中经常出现收敛速度慢、检测精度低、停滞等问题,提出一种结合Powell法的排序加权蚁群(rank weighted ant colony optimization,RWACO)图像边缘提取算法。该算法将RWACO与Powell法相结合,利用RWACO算法进行...针对蚁群算法在图像边缘提取中经常出现收敛速度慢、检测精度低、停滞等问题,提出一种结合Powell法的排序加权蚁群(rank weighted ant colony optimization,RWACO)图像边缘提取算法。该算法将RWACO与Powell法相结合,利用RWACO算法进行全局优化,然后将全局最优值作为Powell法的初始点进行局部优化。实验结果表明,该算法兼顾了全局优化和局部优化的优点,与蚁群算法和Canny算法相比,明显提高了图像边缘精度,计算效率比蚁群算法提高了两倍多,并克服了其停滞等缺点,能够高效地检测出图像的边缘,从而验证了该算法的可行性,对今后的图像边缘检测具有参考价值。展开更多
文摘针对蚁群算法在图像边缘提取中经常出现收敛速度慢、检测精度低、停滞等问题,提出一种结合Powell法的排序加权蚁群(rank weighted ant colony optimization,RWACO)图像边缘提取算法。该算法将RWACO与Powell法相结合,利用RWACO算法进行全局优化,然后将全局最优值作为Powell法的初始点进行局部优化。实验结果表明,该算法兼顾了全局优化和局部优化的优点,与蚁群算法和Canny算法相比,明显提高了图像边缘精度,计算效率比蚁群算法提高了两倍多,并克服了其停滞等缺点,能够高效地检测出图像的边缘,从而验证了该算法的可行性,对今后的图像边缘检测具有参考价值。