Verticillium wilt disease becomes a major threat to many economically important crops. It is unclear whether and how plant immunity takes place during cotton-Verticillium interaction due to the lack of marker genes. T...Verticillium wilt disease becomes a major threat to many economically important crops. It is unclear whether and how plant immunity takes place during cotton-Verticillium interaction due to the lack of marker genes. Taking advantage of cotton (Gossypium hirsutum) genome, we discovered pathogenesis-related (PR) gene families, which have been widely used as markers of immune responses in plants. To profile the expression of G. hirsutum PR genes in the process of plant immunity, we treated cotton roots with two immunogenic peptides, fig22 and nlp20 known as pathogen-associated molecular patterns, as well as three Verticillium dahliae-derived peptides, nlp20vd2, nlp23vd3, and nlp23vd4 which are highly identical to nlp20. Quantitative real-time PCR results revealed that 14 G. hirsutum PR gene (GhPR) families were induced or suppressed independently in response to fig22, nip20, nlp20va2, nlp23vd3, and nlp23vd4. Most GhPR genes are expressed highest at 3 h post incubation of immunogenic peptides. Compared to fig22 and nlp20, nlp20vd2 is more effective to trigger up-regulated expression of GhPR genes. Notably, both nlp23vd3 and nlp23vd4 are able to induce GhPR gene up-regulation, although they do not induce necrosis on cotton leaves. Thus, our results provide marker genes and new immunogenic peptides for further investigation of cotton-V, dahliae interaction.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB11040500) to Hui-Shan GuoNational Natural Science Foundation(31500119) to Chenlei HuaNational Natural Science Foundation(31600124) to Jian-Hua Zhao
文摘Verticillium wilt disease becomes a major threat to many economically important crops. It is unclear whether and how plant immunity takes place during cotton-Verticillium interaction due to the lack of marker genes. Taking advantage of cotton (Gossypium hirsutum) genome, we discovered pathogenesis-related (PR) gene families, which have been widely used as markers of immune responses in plants. To profile the expression of G. hirsutum PR genes in the process of plant immunity, we treated cotton roots with two immunogenic peptides, fig22 and nlp20 known as pathogen-associated molecular patterns, as well as three Verticillium dahliae-derived peptides, nlp20vd2, nlp23vd3, and nlp23vd4 which are highly identical to nlp20. Quantitative real-time PCR results revealed that 14 G. hirsutum PR gene (GhPR) families were induced or suppressed independently in response to fig22, nip20, nlp20va2, nlp23vd3, and nlp23vd4. Most GhPR genes are expressed highest at 3 h post incubation of immunogenic peptides. Compared to fig22 and nlp20, nlp20vd2 is more effective to trigger up-regulated expression of GhPR genes. Notably, both nlp23vd3 and nlp23vd4 are able to induce GhPR gene up-regulation, although they do not induce necrosis on cotton leaves. Thus, our results provide marker genes and new immunogenic peptides for further investigation of cotton-V, dahliae interaction.