期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一维卷积神经网络实时抗噪故障诊断算法 被引量:32
1
作者 刘星辰 周奇才 +2 位作者 赵炯 沈鹤鸿 熊肖磊 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第7期89-95,共7页
针对旋转机械智能诊断方法计算量大和抗噪能力差的问题,在经典模型LeNet-5的基础上提出基于一维卷积神经网络的故障诊断算法.采用全局平均池化层代替传统卷积神经网络中的全连接层,在降低模型计算量的同时,降低模型参数数量和过拟合的风... 针对旋转机械智能诊断方法计算量大和抗噪能力差的问题,在经典模型LeNet-5的基础上提出基于一维卷积神经网络的故障诊断算法.采用全局平均池化层代替传统卷积神经网络中的全连接层,在降低模型计算量的同时,降低模型参数数量和过拟合的风险;利用随机破坏后的时域信号进行训练以提高其抗噪能力;采用改进后的一维卷积核和池化核直接作用于原始时域信号,将特征提取和故障分类合二为一,通过交替的卷积层和池化层实现原始信号自适应特征提取,结合全局平均池化层完成故障分类.利用轴承数据和齿轮数据进行实验验证并对比经典模型LeNet-5、BP神经网络和SVM.结果表明:采用全局平均池化层可有效降低模型计算量,提高模型在低信噪比条件下的诊断精度,采用随机破坏输入训练策略可显著提升模型的抗噪诊断能力;改进后的模型可以实现噪声环境下准确、快速和稳定的故障诊断.通过t-SNE可视化分析说明了模型在特征学习上的有效性. 展开更多
关键词 故障诊断 卷积神经网络 实时诊断 诊断 旋转机械
下载PDF
基于联合抗噪算法的滚动轴承故障诊断研究 被引量:5
2
作者 刘冲 《华东交通大学学报》 2020年第4期82-87,共6页
轴承通常工作于复杂噪声环境下,使得时域振动信号容易受到各种噪声的污染,从而误导诊断结果。针对以上问题,提出基于一维卷积自编码(1D-DCAE)和一维卷积神经网络(1D-CNN)的联合抗噪故障诊断算法。为了模拟真实噪声环境,在原始振动信号... 轴承通常工作于复杂噪声环境下,使得时域振动信号容易受到各种噪声的污染,从而误导诊断结果。针对以上问题,提出基于一维卷积自编码(1D-DCAE)和一维卷积神经网络(1D-CNN)的联合抗噪故障诊断算法。为了模拟真实噪声环境,在原始振动信号中添加不同信噪比的高斯噪声,用1D-DCAE对原始信号降噪,再将降噪信号用于1D-CNN进行故障诊断。基于全卷积神经网络搭建1D-DCAE模型,并舍弃池化层以降低信息丢失,以提高联合诊断模型的抗噪能力。结果表明:采用基于全卷积网络搭建的1D-DACE有更好的降噪效果,改进后的模型能自适应诊断各种噪声环境下的故障。 展开更多
关键词 自编码 卷积神经网络 故障诊断 诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部