期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
基于EEMD的谐波检测方法 被引量:96
1
作者 朱宁辉 白晓民 董伟杰 《中国电机工程学报》 EI CSCD 北大核心 2013年第7期92-98,14,共7页
针对谐波检测问题,比较几种常用谐波检测方法,总结出各自的适用条件。结合经验模态分解理论和总体平均经验模态分解(empirical mode decomposition,EEMD)算法,提出基于EEMD的谐波检测方法。给出离线谐波检测的具体过程,并在此基础上,首... 针对谐波检测问题,比较几种常用谐波检测方法,总结出各自的适用条件。结合经验模态分解理论和总体平均经验模态分解(empirical mode decomposition,EEMD)算法,提出基于EEMD的谐波检测方法。给出离线谐波检测的具体过程,并在此基础上,首先构造当前时刻采样值始终处于中心位置的向量,然后计算总体谐波分量的在线检测方法。另外,可以通过修改EEMD算法中的频率计算条件实现对特定次数谐波分量的检测。为验证该方法的检测效果,将EEMD算法与瞬时无功功率方法(ip iq)分别应用于仿真和实测数据。检测结果表明,所提方法不但在检测稳态信号时具有很好的精度,而且在检测波动信号时也具有较好的动态特性。 展开更多
关键词 经验模态分解 体平经验模态分解 谐波检测 基波提取 在线算
下载PDF
基于EEMD能量熵和支持向量机的齿轮故障诊断方法 被引量:55
2
作者 张超 陈建军 郭迅 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期932-939,共8页
针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮... 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型。实验结果表明:文中提出的方法能有效地应用于齿轮的故障诊断。 展开更多
关键词 体平经验模态分解 本征模函数 能量熵 支持向量机 故障诊断
下载PDF
基于MED-EEMD的滚动轴承微弱故障特征提取 被引量:36
3
作者 王志坚 韩振南 +1 位作者 刘邱祖 宁少慧 《农业工程学报》 EI CAS CSCD 北大核心 2014年第23期70-78,共9页
针对滚动轴承在强噪声环境下故障信号微弱、故障特征难以提取等问题,提出了基于最小熵反褶积(minimum entropy deconvolution,MED)和总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)两者相结合的方法来提取滚动轴承... 针对滚动轴承在强噪声环境下故障信号微弱、故障特征难以提取等问题,提出了基于最小熵反褶积(minimum entropy deconvolution,MED)和总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)两者相结合的方法来提取滚动轴承微弱故障特征。通过对仿真信号和风电齿轮箱的振动信号分析,结果表明:为了弥补在强背景噪声下EEMD对微弱信号特征提取的局限性,该文选取MED作为EEMD的前置滤波器,最后对敏感的本征模态函数进行循环自相关函数解调分析,得出了风电齿轮箱的故障来自于高速轴的微小弯曲和高速轴输出端#10轴承外圈点蚀。同时与EEMD进行对比分析,表明了这种方法对微弱故障特征提取有较好的适用性。该文为多故障共存并处于强背景噪声下的微弱特征提取提供了参考。 展开更多
关键词 轴承 故障检测 信号分析 齿轮箱 最小熵反褶积 体平经验模态分解 微弱故障 多故障
下载PDF
基于EEMD和小波包变换的早期故障敏感特征获取 被引量:36
4
作者 王红军 万鹏 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第9期945-950,共6页
提出一种基于总体平均经验模态分解和小波包变换的方法,进行早期故障敏感特征的获取,构建早期故障诊断模型.该方法首先应用EEMD对现场采集的振动信号进行分解,分离出不同频率成分的特征信号,选择与原信号相关系数最大的IMF分量进行信息... 提出一种基于总体平均经验模态分解和小波包变换的方法,进行早期故障敏感特征的获取,构建早期故障诊断模型.该方法首先应用EEMD对现场采集的振动信号进行分解,分离出不同频率成分的特征信号,选择与原信号相关系数最大的IMF分量进行信息重构;面向重构的IMF分量采用WPT进行分解,得到各个节点的小波系数;最后使用Hilbert变换提取小波包系数的包络,计算功率谱,准确获得早期故障的敏感特征.通过对仿真信号的分析验证了该方法对故障诊断的有效性.将该方法应用于实测的滚动轴承的内圈、外圈和滚动体故障诊断,诊断结果均表明该方法可有效提取早期故障敏感特征,故障诊断快速准确. 展开更多
关键词 早期故障 特征获取 体平经验模态分解 小波包
下载PDF
基于CEEMD-EEMD的局部放电阈值去噪新方法 被引量:32
5
作者 王恩俊 张建文 +1 位作者 马晓伟 马鸿宇 《电力系统保护与控制》 EI CSCD 北大核心 2016年第15期93-98,共6页
为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解(CEEMD-EEMD)的局部放电阈值去噪新方法。首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识... 为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解(CEEMD-EEMD)的局部放电阈值去噪新方法。首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识将分解后的信号进行阈值去噪。利用该算法对局部放电的仿真信号和实测信号进行去噪处理,并与常规的小波去噪算法比较分析。仿真和实验的去噪结果表明,基于CEEMD-EEMD的局部放电阈值去噪方法取得了良好的去噪效果,验证了该方法的有效性,从而为局部放电信号的预处理提供了一种新思路。 展开更多
关键词 局部放电 完全经验模态分解 体平经验模态分解 阈值去噪 小波去噪
下载PDF
基于总体平均经验模态分解的光纤周界预警系统模式识别方法 被引量:25
6
作者 蒋立辉 盖井艳 +3 位作者 王维波 熊兴隆 梁生 盛新志 《光学学报》 EI CAS CSCD 北大核心 2015年第10期52-58,共7页
针对光纤周界预警系统输出信号的非平稳特性,提出了一种基于总体平均经验模态分解(EEMD)的模式识别方法。预警系统基于Mach-Zehnder干涉原理,利用4条单模光纤构成分布式扰动传感器,实时监测周界入侵事件。该方法引用具有自适应性的EEMD... 针对光纤周界预警系统输出信号的非平稳特性,提出了一种基于总体平均经验模态分解(EEMD)的模式识别方法。预警系统基于Mach-Zehnder干涉原理,利用4条单模光纤构成分布式扰动传感器,实时监测周界入侵事件。该方法引用具有自适应性的EEMD算法将振动信号分解成多个本征模态函数(IMF)。根据不同振动信号能量各异的特点,提出EEMD能量熵的方法排除非入侵的干扰。最后建立双重支持向量机对入侵信号进行识别。实验结果表明:该方法可以有效排除非人为入侵的干扰,准确识别攀爬、敲击和其他虚警信号,平均正确识别率优于92%,提高了系统的报警识别率,降低了误报率。 展开更多
关键词 光纤光学 Mach-Zehnder干涉 体平经验模态分解 能量熵 模式识别
原文传递
基于EEMD和TLS-ESPRIT的谐波间谐波检测方法 被引量:24
7
作者 于兴林 李慧敏 李天云 《电力系统保护与控制》 EI CSCD 北大核心 2014年第4期67-72,共6页
总体平均经验模态分解(EEMD)可以在噪声环境下对信号进行准确的分解,克服了EMD分解过程中产生频率混叠和虚假模态的缺陷。总体最小二成旋转不变技术(TLS-ESPRIT)算法本身具有很好的消噪能力,用TLS-ESPRIT算法可以准确地辨识出信号的参... 总体平均经验模态分解(EEMD)可以在噪声环境下对信号进行准确的分解,克服了EMD分解过程中产生频率混叠和虚假模态的缺陷。总体最小二成旋转不变技术(TLS-ESPRIT)算法本身具有很好的消噪能力,用TLS-ESPRIT算法可以准确地辨识出信号的参数。结合两者的优点,提出了基于EEMD和TLS-ESPRIT的谐波、间谐波检测方法,结合EEMD分解后的各阶分量的能量来确定电网中真实的谐波、间谐波分量。仿真结果验证了所提方法的可行性和有效性。 展开更多
关键词 体平经验模态分解 TLS—ESPRIT 信号能量 谐波 间谐波
下载PDF
奇异值熵和支持向量机的齿轮故障诊断 被引量:24
8
作者 张超 陈建军 +1 位作者 杨立东 徐亚兰 《振动.测试与诊断》 EI CSCD 北大核心 2011年第5期600-604,665,共5页
提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法。首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征... 提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法。首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征模式分量自动形成初始特征向量矩阵;然后,对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并对其进行归一化,求得奇异值熵,根据奇异值熵值大小可以判断齿轮的故障类型;最后,将奇异值故障特征向量作为支持向量机的输入,判断齿轮的工作状态和故障类型。试验结果表明,即使在小样本情况下,基于EEMD奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型。 展开更多
关键词 体平经验模态分解 奇异值熵 支持向量机 本征模式分量 故障诊断
下载PDF
EEMD在同时消除脉搏血氧检测中脉搏波信号高频噪声和基线漂移中的应用 被引量:20
9
作者 韩庆阳 王晓东 +1 位作者 李丙玉 周鹏骥 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1384-1388,共5页
人体血氧饱和度是基于脉搏波信号测量得到的,然而在脉搏波信号采集的过程中存在着由人体呼吸和仪器本身热噪声等带来的基线漂移和高频噪声,影响人体血氧饱和度的测量精度。因此,该文提出一种总体平均经验模态分解(Ensemble Empirical Mo... 人体血氧饱和度是基于脉搏波信号测量得到的,然而在脉搏波信号采集的过程中存在着由人体呼吸和仪器本身热噪声等带来的基线漂移和高频噪声,影响人体血氧饱和度的测量精度。因此,该文提出一种总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与基于排列熵(Permutation Entropy,PE)的信号随机性检测相结合的方法,同时消除基线漂移和高频噪声。对脉搏波信号进行EEMD分解,计算分解到得到的内在模式分量的排列熵,选取阈值,分别判断并剔除代表高频噪声和基线漂移的内在模式分量。最后信号重构就得到同时消除高频噪声和基线漂移的脉搏波信号。通过自行研制的测量装置所采集的脉搏波信号进行实验验证,利用信号的频谱和交直流比R评价效果。结果表明:该方法有效地同时消除了脉搏波信号中的高频噪声和基线漂移,这将有利于人体血氧饱和度测量精度的提高。 展开更多
关键词 脉搏波信号 人体血氧饱和度 高频噪声 基线漂移 体平经验模态分解 排列熵
下载PDF
基于EEMD分解和奇异值差分谱理论的轴承故障诊断研究 被引量:18
10
作者 董文智 张超 《机械强度》 CAS CSCD 北大核心 2012年第2期183-189,共7页
提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和奇异值差分谱的轴承故障诊断方法。首先将非平稳的原始轴承振动信号通过EEMD方法分解成若干个平稳的本征模函数(intrinsic modefunction,IMF);由于背... 提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和奇异值差分谱的轴承故障诊断方法。首先将非平稳的原始轴承振动信号通过EEMD方法分解成若干个平稳的本征模函数(intrinsic modefunction,IMF);由于背景噪声的影响,从各个IMF的频谱中难以准确地得到故障频率。对IMF分量构建Hankel矩阵,并进行奇异值分解,进一步找到奇异值差分谱,根据奇异值差分谱理论对某IMF分量进行消噪和重构,然后再求其频谱,便能准确地得到故障频率。实验结果表明,所提出的方法能有效地应用于轴承的故障诊断。 展开更多
关键词 体平经验模态分解 奇异值差分谱 本征模函数 HANKEL矩阵
下载PDF
基于奇异值分解(SVD)差分谱降噪和本征模函数(IMF)能量谱的改进Hilbert-Huang方法 被引量:18
11
作者 柴凯 张梅军 +1 位作者 黄杰 唐俊刚 《科学技术与工程》 北大核心 2015年第9期90-96,共7页
针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩... 针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩阵结构,利用奇异值差分谱来确定有效奇异值的阶次;然后对消噪的信号进行EEMD分解,通过IMF能量谱来去除虚假分量;最后对主IMF进行Hilbert谱分析。仿真和实验结果表明,SVD能提高信噪比,抑制噪声对EEMD分解精度的干扰;能量谱能有效地消除虚假IMF对Hilbert谱分析的影响;Hilbert谱中各频率成分清晰,解决了随机噪声和虚假分量对传统改进HHT的不良影响。 展开更多
关键词 改进Hilbert-Huang变换 奇异值分解 差分谱 体平经验模态分解 固有模态函数 能量谱
下载PDF
部分集成局部特征尺度分解:一种新的基于噪声辅助数据分析方法 被引量:18
12
作者 郑近德 程军圣 杨宇 《电子学报》 EI CAS CSCD 北大核心 2013年第5期1030-1035,共6页
局部特征尺度分解(Local Characteristic-Scale Decomposition,LCD)是最近提出的一种类似于经验模态分解(EmpiricalMode Decomposition,EMD)的非平稳信号分析方法.为解决LCD方法的模态混淆问题,论文首先提出了基于噪声辅助分析的集成局... 局部特征尺度分解(Local Characteristic-Scale Decomposition,LCD)是最近提出的一种类似于经验模态分解(EmpiricalMode Decomposition,EMD)的非平稳信号分析方法.为解决LCD方法的模态混淆问题,论文首先提出了基于噪声辅助分析的集成局部特征尺度分解方法(Ensemble LCD,ELCD).然而,ELCD有类似于总体平均经验模态分解(En-semble EMD,EEMD)和互补总体平均经验模态分解(Complementary,CEEMD)的固有缺陷,在此基础上,同时结合最近提出的随机性检测方法——排列熵(Permutation Entropy,PE),论文提出了部分集成局部特征尺度分解(Partly EnsembleLCD,PELCD)方法.仿真数据分析表明,论文提出的PELCD方法不仅能够有效地抑制LCD分解的模态混淆,而且在抑制伪分量的产生以及分量精确性等方面要优于CEEMD和ELCD方法. 展开更多
关键词 局部特征尺度分解 模态混淆 排列熵 部分集成局部特征尺度分解 体平经验模态分解
下载PDF
基于EEMD和堆叠稀疏自编码的滚动轴承故障诊断方法 被引量:17
13
作者 罗金 童靳于 +2 位作者 郑近德 潘海洋 潘紫微 《噪声与振动控制》 CSCD 2020年第2期115-120,共6页
针对现有的智能诊断方法训练时间长、识别率不高的问题,提出一种基于总体平均经验模态分解(EEMD)和堆叠稀疏自编码(SSAE)的滚动轴承故障诊断方法。首先,采用EEMD对滚动轴承振动信号进行分解,得到若干个固有模态函数和一个趋势项之和;其... 针对现有的智能诊断方法训练时间长、识别率不高的问题,提出一种基于总体平均经验模态分解(EEMD)和堆叠稀疏自编码(SSAE)的滚动轴承故障诊断方法。首先,采用EEMD对滚动轴承振动信号进行分解,得到若干个固有模态函数和一个趋势项之和;其次,计算每个固有模态函数分量的峭度,选取峭度值较大的分量作为敏感故障特征分量;第三,提取敏感故障特征分量的时域及频域特征,构建新的数据集,作为诊断网络的输入。最后,将构建的新数据集作为堆叠稀疏自编码网络的输入,进行训练和测试。与现有方法的对比结果表明,所提方法在准确性、计算耗时方面更具优势。 展开更多
关键词 故障诊断 深度学习 稀疏自编码器 体平经验模态分解 滚动轴承
下载PDF
完备总体平均局部特征尺度分解及其在转子故障诊断中的应用 被引量:13
14
作者 郑近德 程军圣 +1 位作者 聂永红 罗颂荣 《振动工程学报》 EI CSCD 北大核心 2014年第4期637-646,共10页
作为对经验模态分解(EMD)的改进,局部特征尺度分解(LCD)也有类似EMD的模态混淆问题。基于噪声辅助分析的总体平均经验模态分解(EEMD)和完备的EEMD(CEEMD)等是抑制分解模态混淆的有效途径。然而此类方法伪分量较多、得到的分量未必满足IM... 作为对经验模态分解(EMD)的改进,局部特征尺度分解(LCD)也有类似EMD的模态混淆问题。基于噪声辅助分析的总体平均经验模态分解(EEMD)和完备的EEMD(CEEMD)等是抑制分解模态混淆的有效途径。然而此类方法伪分量较多、得到的分量未必满足IMF分量定义等。针对此,提出了一种完备的总体平均局部特征尺度分解(CELCD),并通过仿真信号将CELCD方法与CEEMD进行了对比,结果表明CELCD能够有效抑制LCD模态混淆,而且在抑制伪分量的产生,提高正交性和分量的精确性等方面具有一定的优越性。最后论文将CELCD方法应用于转子碰摩故障的诊断,结果表明了方法的有效性。 展开更多
关键词 故障诊断 模态混淆 局部特征尺度分解 完备体平局部特征尺度分解 体平经验模态分解
下载PDF
均值优化经验模态分解及其在转子故障诊断中的应用 被引量:13
15
作者 郑近德 潘海洋 程军圣 《机械工程学报》 EI CAS CSCD 北大核心 2018年第23期93-101,共9页
经验模态分解(Empirical mode decomposition,EMD)作为一种自适应的信号分解方法已经被广泛应用于诸多工程领域。为了提高EMD的分解性能,分别考虑从不同权值均值曲线的迭代筛分结果中选择正交性最小以及从每层内禀模态函数迭代结果中选... 经验模态分解(Empirical mode decomposition,EMD)作为一种自适应的信号分解方法已经被广泛应用于诸多工程领域。为了提高EMD的分解性能,分别考虑从不同权值均值曲线的迭代筛分结果中选择正交性最小以及从每层内禀模态函数迭代结果中选择最优以保证整体分解最优,发展了两种均值优化经验模态分解(Mean-optimized empirical mode decomposition,MOEMD)算法。通过仿真信号分析,将MOEMD方法与EMD等现有信号分解方法进行了对比,结果表明,MOEMD方法在分解性能和分解精度方面比EMD等方法有显著提高。最后,将MOEMD方法应用于转子碰摩故障信号分析,并与EMD进行了对比分析,结果表明,MOEMD方法不仅能够有效地识别转子碰摩故障,而且识别效果优于EMD方法。 展开更多
关键词 经验模态分解 体平经验模态分解 局部特征尺度分解 转子碰摩 故障诊断
原文传递
基于CMF-EEMD的风电齿轮箱多故障特征提取 被引量:12
16
作者 王志坚 韩振南 +1 位作者 宁少慧 梁鹏威 《电机与控制学报》 EI CSCD 北大核心 2016年第2期104-111,共8页
针对EMD(empirical mode decomposition)模态混叠现象和由于所添加白噪声幅值单一而影响EEMD(ensemble empirical mode decomposition)分解精度等问题,提出了一种新的信号处理方法CMF-EEMD。CMF(combined mode function)将EMD分解得到... 针对EMD(empirical mode decomposition)模态混叠现象和由于所添加白噪声幅值单一而影响EEMD(ensemble empirical mode decomposition)分解精度等问题,提出了一种新的信号处理方法CMF-EEMD。CMF(combined mode function)将EMD分解得到敏感的IMFs按高低频进行组合,形成两个包含高低频的本征模态函数Ch和CL,然后通过添加不同的白噪声幅值对Ch和CL分别进行EEMD分解,最后对敏感的IMFs进行循环自相关函数解调分析。将提出方法应用于仿真信号和风力齿轮箱试验台的振动信号,成功提取了多故障特征频率,验证了此方法的有效性。并通过与添加单一白噪声幅值进行对比分析,凸显此方法具有更高的分解精度。 展开更多
关键词 风电齿轮箱 组合模态函数 体平经验模态分解 多故障 循环自相关函数
下载PDF
基于EEMD与FastICA的损伤异常识别与定位 被引量:12
17
作者 姜绍飞 陈志刚 +2 位作者 沈清华 吴铭昊 麻胜兰 《振动与冲击》 EI CSCD 北大核心 2016年第1期203-209,共7页
为了准确地提取结构损伤异常信息,消除小波奇异值分解时存在需要特定的小波基和分解层数以及经验模态分解(EMD)方法存在诸如虚假模态混叠等问题,提出一种基于改进的总体平均经验模态分解(EEMD)与快速独立分量分析(Fast ICA)相结合的提... 为了准确地提取结构损伤异常信息,消除小波奇异值分解时存在需要特定的小波基和分解层数以及经验模态分解(EMD)方法存在诸如虚假模态混叠等问题,提出一种基于改进的总体平均经验模态分解(EEMD)与快速独立分量分析(Fast ICA)相结合的提取结构损伤特征并进行识别与定位的新方法。首先,通过EEMD对结构动力响应信号进行预处理并用Fast ICA提取出包含损伤信息的特征分量对结构响应异常进行识别和初步定位;然后,计算归一化的源分布向量(NSDV)的最大值,并根据该最大值精确定位结构损伤。最后,通过框架数值算例和试验进行了所提方法的验证,结果表明该算法能够较好地进行结构损伤异常的识别与定位。 展开更多
关键词 体平经验模态分解 快速独立分量分析 损伤定位 源分布向量
下载PDF
APEEMD及其在转子碰摩故障诊断中的应用 被引量:11
18
作者 郑近德 潘海洋 +1 位作者 张俊 程军圣 《振动.测试与诊断》 EI CSCD 北大核心 2016年第2期257-263,399,共7页
总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)是抑制经验模态分解(empirical mode decomposition,简称EMD)模态混叠的有效方法,针对EEMD分解效果依赖于添加噪声的大小、筛分次数和总体平均次数等参数的选择... 总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)是抑制经验模态分解(empirical mode decomposition,简称EMD)模态混叠的有效方法,针对EEMD分解效果依赖于添加噪声的大小、筛分次数和总体平均次数等参数的选择及噪声残留大、分解不完备等问题,提出了自适应部分集成经验模态分解。该方法通过成对地向目标信号加入自适应噪声,并对每个内禀模态函数(intrinsic mode function,简称IMF)自动选择筛选次数,通过排列熵检测筛分出高频IMF,再对剩余信号进行EMD分解。将提出的方法应用于仿真和转子碰摩故障试验数据分析,结果表明提出的方法能够有效地应用于转子碰摩故障诊断,而且在分量的精确性、完备性和模态混叠的抑制等方面优于EEMD方法。 展开更多
关键词 经验模态分解 体平经验模态分解 模态混叠 转子碰摩 故障诊断
下载PDF
EEMD自适应去噪在拉曼光谱中的应用 被引量:11
19
作者 赵肖宇 方一鸣 +1 位作者 王志刚 翟哲 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第12期3255-3258,共4页
二代小波是公认较好的降噪手段,但是降噪效果依赖于基函数、分解层数和阈值等参数设置。经验模态分解(empirical mode decomposition,EMD)无需参数设定,按照频率特性将信号分解成本征模函数(intrinsic mode function,IMF),对IMF滤波,实... 二代小波是公认较好的降噪手段,但是降噪效果依赖于基函数、分解层数和阈值等参数设置。经验模态分解(empirical mode decomposition,EMD)无需参数设定,按照频率特性将信号分解成本征模函数(intrinsic mode function,IMF),对IMF滤波,实现了信号自适应去噪。拉曼光谱中信号和噪声交叠集中在极高频段,EMD产生模态混叠问题,影响去噪效果。应用总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)拉曼光谱克服了模态混叠,有效区分出高频信号和噪声,获得了与小波函数相似去噪效果。文中首先对一段非线性非平稳豆油脂拉曼光谱EMD分解,可见模态混叠,EEMD分解出清晰模态的特征分量。然后分别用快速傅里叶变换(fast Fourier transform,FFT)、小波变换(Wavelet)、EMD和EEMD处理含噪光谱,信噪比、均方根误差、相关系数三个方面指标表明FFT高频去噪效果最差,其次是EMD,恰当的Wavelet同EEMD效果相当,EEMD的优势是降噪过程的自适应。最后提出光谱时频分析方法和IMF噪声属性判别准则研究趋势。 展开更多
关键词 体平经验模态分解 拉曼光谱 信号降噪 自适应
下载PDF
基于EEMD与改进小波阈值的磁记忆信号降噪研究 被引量:11
20
作者 张雪英 谢飞 +1 位作者 乔铁柱 杨洋 《太原理工大学学报》 CAS 北大核心 2015年第5期592-597,共6页
利用金属磁记忆法对煤矿系统中的钢绳芯输送带进行早期故障诊断时,发现信号中包含的噪声对诊断结果影响较大。针对此问题,提出了基于总体平均经验模态分解和改进小波半软阈值的降噪算法。首先利用总体平均经验模态分解得到若干个本征模... 利用金属磁记忆法对煤矿系统中的钢绳芯输送带进行早期故障诊断时,发现信号中包含的噪声对诊断结果影响较大。针对此问题,提出了基于总体平均经验模态分解和改进小波半软阈值的降噪算法。首先利用总体平均经验模态分解得到若干个本征模函数,经过相关性分析后提取本征模函数的有效分量,用人工蜂群优化算法改进阈值函数,再分别对有效分量进行改进的小波半软阈值函数降噪处理,最后将信号重构。经过降噪处理后的磁记忆信号能较好地保留信号中的有用信息。仿真实验结果表明,该算法可实现噪声环境下的钢绳芯输送带应力集中区特征的有效提取,从而实现早期故障诊断。 展开更多
关键词 体平经验模态分解 人工蜂群算 小波半软阈值 金属磁记忆 广义交叉验证 相关性 分析
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部