期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
基于地面电场资料的雷暴临近预报研究 被引量:12
1
作者 行鸿彦 张强 季鑫源 《大气科学学报》 CSCD 北大核心 2017年第1期111-117,共7页
利用总体平均经验模态分解算法(EEMD),对南京地区2010—2011年6—8月近地面大气电场资料进行分析,研究了晴天、弱雷暴和强雷暴天气条件下大气电场的振荡特征。在单站电场仪观测范围内,以晴天大气为背景场,根据固有模态函数(IMF)方差最... 利用总体平均经验模态分解算法(EEMD),对南京地区2010—2011年6—8月近地面大气电场资料进行分析,研究了晴天、弱雷暴和强雷暴天气条件下大气电场的振荡特征。在单站电场仪观测范围内,以晴天大气为背景场,根据固有模态函数(IMF)方差最大值对应层数的动态特性,建立并验证了两种强度的雷暴临近预报模型。结果表明:弱雷暴发生前IMF方差最大值对应层数跳变幅度较平稳,而强雷暴跳变幅度逐渐加剧。对IMF方差最大值对应层数进行三次样条插值,可直观地表征雷暴发生发展过程,延长预报时间至1 h。利用这些特征对92个独立样本进行预报效果检验,预报的准确率为73.3%,虚警率为14.5%。 展开更多
关键词 体平经验 模态分解 大气电场 方差动态特性 雷电预警
下载PDF
基于改进Hilbert-Huang变换的机械故障诊断 被引量:130
2
作者 雷亚国 《机械工程学报》 EI CAS CSCD 北大核心 2011年第5期71-77,共7页
Hilbert-Huang变换(Hilbert-Huang transform,HHT)通过经验模式分解(Empirical mode decomposition,EMD)和Hilbert变换能够自适应地将复杂的非线性、非平稳信号刻画成Hilbert-Huang谱,突显信号的局部特征,具有良好的时频聚集能力,因此... Hilbert-Huang变换(Hilbert-Huang transform,HHT)通过经验模式分解(Empirical mode decomposition,EMD)和Hilbert变换能够自适应地将复杂的非线性、非平稳信号刻画成Hilbert-Huang谱,突显信号的局部特征,具有良好的时频聚集能力,因此被广泛用于机械信号处理与故障诊断。然而,EMD存在的模式混淆问题使其难以获得准确的本征模式分量(Intrinsic mode function,IMF)。此外,通常只有部分IMF包含故障敏感信息、表征故障特征。因此基于EMD和所有IMF的Hilbert-Huang谱的故障诊断精度有待提高。为此提出一种基于总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)和敏感IMF的改进HHT。该方法利用EEMD获取无模式混淆的IMF,通过敏感度评估算法从EEMD所有的IMF中选择反应故障特征的敏感IMF,从而得到改进的Hilbert-Huang谱以更准确地诊断机械故障。通过仿真试验以及转子早期碰摩故障诊断的工程实例验证了改进HHT的有效性。 展开更多
关键词 体平经验模式分解 Hilbert-Huang 变换 故障诊断
下载PDF
基于EEMD的谐波检测方法 被引量:96
3
作者 朱宁辉 白晓民 董伟杰 《中国电机工程学报》 EI CSCD 北大核心 2013年第7期92-98,14,共7页
针对谐波检测问题,比较几种常用谐波检测方法,总结出各自的适用条件。结合经验模态分解理论和总体平均经验模态分解(empirical mode decomposition,EEMD)算法,提出基于EEMD的谐波检测方法。给出离线谐波检测的具体过程,并在此基础上,首... 针对谐波检测问题,比较几种常用谐波检测方法,总结出各自的适用条件。结合经验模态分解理论和总体平均经验模态分解(empirical mode decomposition,EEMD)算法,提出基于EEMD的谐波检测方法。给出离线谐波检测的具体过程,并在此基础上,首先构造当前时刻采样值始终处于中心位置的向量,然后计算总体谐波分量的在线检测方法。另外,可以通过修改EEMD算法中的频率计算条件实现对特定次数谐波分量的检测。为验证该方法的检测效果,将EEMD算法与瞬时无功功率方法(ip iq)分别应用于仿真和实测数据。检测结果表明,所提方法不但在检测稳态信号时具有很好的精度,而且在检测波动信号时也具有较好的动态特性。 展开更多
关键词 经验模态分解 体平经验模态分解 谐波检测 基波提取 在线算法
下载PDF
总体平均经验模式分解与1.5维谱方法的研究 被引量:70
4
作者 陈略 訾艳阳 +1 位作者 何正嘉 成玮 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第5期94-98,共5页
针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方... 针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方法对含有故障特征信息的IMF进行后处理.该方法具有避免模式混淆、抑制高斯白噪声、检测非线性耦合特征等特性,并以此来提取故障的微弱特征信息.根据待处理信号的时频特性与EEMD原理,提出了在EEMD方法中加入高斯白噪声的准则,通过信号仿真验证了EEMD方法的抗混分解能力.将EEMD与1.5维谱方法应用于机车走行部齿轮箱的监测诊断中,成功地提取出齿轮箱大齿轮齿根早期的裂纹故障. 展开更多
关键词 体平经验模式分解 1.5维谱 特征提取 齿轮裂纹故障
下载PDF
基于EEMD能量熵和支持向量机的齿轮故障诊断方法 被引量:55
5
作者 张超 陈建军 郭迅 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期932-939,共8页
针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮... 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型。实验结果表明:文中提出的方法能有效地应用于齿轮的故障诊断。 展开更多
关键词 体平经验模态分解 本征模函数 能量熵 支持向量机 故障诊断
下载PDF
基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断 被引量:48
6
作者 孙曙光 于晗 +2 位作者 杜太行 王景芹 赵黎媛 《电工技术学报》 EI CSCD 北大核心 2017年第7期20-30,共11页
为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断... 为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断方法。该方法首先将振动信号通过改进的小波包阈值去噪算法处理;其次采用CEEMD提取若干个反映断路器状态信息的固有模态函数(IMF)分量,依据各IMF分量的能量分布特点,选择其中前7阶进行处理,计算其样本熵形成有效的特征样本;最后通过计算不同故障类型的样本间欧氏距离来定量评价类间样本平均距离,建立基于RVM的二叉树多分类器,诊断得出万能式断路器故障类型。基于所设计的分合闸典型故障模型进行实验。与其他方法的对比实验表明,所提方法可利用相对较少的故障数据样本实现对万能式断路器故障类型的识别并具有较高的识别率;同时实验表明,辅以同一故障类型的样本间欧氏距离,可实现对分合闸故障中三相不同期故障严重程度的初步评估。 展开更多
关键词 万能式断路器 分合闸故障诊断 振动信号 互补体平经验模态分解 样本熵相关向量机
下载PDF
自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用 被引量:45
7
作者 雷亚国 孔德同 +1 位作者 李乃鹏 林京 《机械工程学报》 EI CAS CSCD 北大核心 2014年第3期64-70,共7页
总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)是针对经验模式分解(Empirical mode decomposition,EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模... 总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)是针对经验模式分解(Empirical mode decomposition,EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模式混淆的目的。然而,EEMD分解效果取决于添加噪声的幅值、筛选次数等参数的选择。目前的研究通常是人为选择这些参数,具有较大的盲目性和主观性,因此分解结果差强人意。为了解决以上问题,提出一种新的自适应总体平均经验模式分解方法。该方法基于EMD的滤波特性,在提取本征模式分量(Intrinsic mode function,IMF)的过程中自适应改变加入噪声的幅值,并对每个IMF自动选择不同的筛选次数,可以更好地削弱模式混淆。通过仿真试验验证了该方法的有效性,并将该方法应用于行星轮故障检测中,取得了比EEMD更好的故障检测结果。 展开更多
关键词 自适应体平经验模式分解 行星齿轮箱 故障检测
下载PDF
基于MED-EEMD的滚动轴承微弱故障特征提取 被引量:36
8
作者 王志坚 韩振南 +1 位作者 刘邱祖 宁少慧 《农业工程学报》 EI CAS CSCD 北大核心 2014年第23期70-78,共9页
针对滚动轴承在强噪声环境下故障信号微弱、故障特征难以提取等问题,提出了基于最小熵反褶积(minimum entropy deconvolution,MED)和总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)两者相结合的方法来提取滚动轴承... 针对滚动轴承在强噪声环境下故障信号微弱、故障特征难以提取等问题,提出了基于最小熵反褶积(minimum entropy deconvolution,MED)和总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)两者相结合的方法来提取滚动轴承微弱故障特征。通过对仿真信号和风电齿轮箱的振动信号分析,结果表明:为了弥补在强背景噪声下EEMD对微弱信号特征提取的局限性,该文选取MED作为EEMD的前置滤波器,最后对敏感的本征模态函数进行循环自相关函数解调分析,得出了风电齿轮箱的故障来自于高速轴的微小弯曲和高速轴输出端#10轴承外圈点蚀。同时与EEMD进行对比分析,表明了这种方法对微弱故障特征提取有较好的适用性。该文为多故障共存并处于强背景噪声下的微弱特征提取提供了参考。 展开更多
关键词 轴承 故障检测 信号分析 齿轮箱 最小熵反褶积 体平经验模态分解 微弱故障 多故障
下载PDF
基于EEMD和小波包变换的早期故障敏感特征获取 被引量:36
9
作者 王红军 万鹏 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第9期945-950,共6页
提出一种基于总体平均经验模态分解和小波包变换的方法,进行早期故障敏感特征的获取,构建早期故障诊断模型.该方法首先应用EEMD对现场采集的振动信号进行分解,分离出不同频率成分的特征信号,选择与原信号相关系数最大的IMF分量进行信息... 提出一种基于总体平均经验模态分解和小波包变换的方法,进行早期故障敏感特征的获取,构建早期故障诊断模型.该方法首先应用EEMD对现场采集的振动信号进行分解,分离出不同频率成分的特征信号,选择与原信号相关系数最大的IMF分量进行信息重构;面向重构的IMF分量采用WPT进行分解,得到各个节点的小波系数;最后使用Hilbert变换提取小波包系数的包络,计算功率谱,准确获得早期故障的敏感特征.通过对仿真信号的分析验证了该方法对故障诊断的有效性.将该方法应用于实测的滚动轴承的内圈、外圈和滚动体故障诊断,诊断结果均表明该方法可有效提取早期故障敏感特征,故障诊断快速准确. 展开更多
关键词 早期故障 特征获取 体平经验模态分解 小波包
下载PDF
基于EEMD能量熵和支持向量机的轴承故障诊断 被引量:36
10
作者 董文智 张超 《机械设计与研究》 CSCD 北大核心 2011年第5期53-56,63,共5页
提出了一种基于总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和支持向量机(Support Vector Machine,SVM)的轴承故障诊断方法。首先通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(Intrin... 提出了一种基于总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和支持向量机(Support Vector Machine,SVM)的轴承故障诊断方法。首先通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(Intrinsic Mode Function,IMF);轴承发生不同的故障时,信号在不同频带内的能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断轴承的工作状态和故障类型。实验结果表明,文中提出的方法能有效地应用于轴承的故障诊断。 展开更多
关键词 体平经验模态分解(EEMD) 本征模函数 能量熵 支持向量机(SVM) 故障诊断
原文传递
基于CEEMD-EEMD的局部放电阈值去噪新方法 被引量:32
11
作者 王恩俊 张建文 +1 位作者 马晓伟 马鸿宇 《电力系统保护与控制》 EI CSCD 北大核心 2016年第15期93-98,共6页
为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解(CEEMD-EEMD)的局部放电阈值去噪新方法。首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识... 为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解(CEEMD-EEMD)的局部放电阈值去噪新方法。首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识将分解后的信号进行阈值去噪。利用该算法对局部放电的仿真信号和实测信号进行去噪处理,并与常规的小波去噪算法比较分析。仿真和实验的去噪结果表明,基于CEEMD-EEMD的局部放电阈值去噪方法取得了良好的去噪效果,验证了该方法的有效性,从而为局部放电信号的预处理提供了一种新思路。 展开更多
关键词 局部放电 完全经验模态分解 体平经验模态分解 阈值去噪 小波去噪
下载PDF
基于EEMD样本熵和GK模糊聚类的机械故障识别 被引量:31
12
作者 王书涛 李亮 +1 位作者 张淑清 孙国秀 《中国机械工程》 EI CAS CSCD 北大核心 2013年第22期3036-3040,3044,共6页
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态... 针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。 展开更多
关键词 体平经验模式分解(EEMD) 样本熵 GK模糊聚类 机械故障识别
下载PDF
EEMD的非平稳信号降噪及其故障诊断应用 被引量:27
13
作者 吕建新 吴虎胜 田杰 《计算机工程与应用》 CSCD 北大核心 2011年第28期223-227,共5页
针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于... 针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于故障诊断。利用EEMD对非平稳振动信号进行自适应的分解,有效抑制经典经验模式分解的可能出现的模式混叠现象,再以所得的各固有模式分量(Intrinsic Mode Function,IMF)的过零率作为噪声评判准则,重构过零率阈值范围内的非噪声分量以实现信号降噪。另外,计算非噪声分量的能量矩作为故障特征提输入二叉树支持向量机实现的柴油机故障诊断验证了该方法有效性。 展开更多
关键词 往复机械 信号降噪 特征提取 过零率分析 体平经验模式分解 能量矩
下载PDF
基于EEMD模糊熵的PCA-GG滚动轴承聚类故障诊断 被引量:25
14
作者 许凡 方彦军 张荣 《计算机集成制造系统》 EI CSCD 北大核心 2016年第11期2631-2642,共12页
针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的... 针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的原始信号进行分解,得到若干个固有模式分量,并使用样本熵与模糊熵计算其熵值。通过主成分分析法对熵特征向量进行可视化降维,并作为模糊C均值、GK(GustafsonKessel)与GG聚类算法的输入,实现对滚动轴承的故障诊断。利用分类系数和平均模糊熵对上述聚类结果进行评价与对比。通过实验表明,所设计的模型能对熵特征向量进行可视化降维,且其故障识别聚类效果优于其他方法。 展开更多
关键词 滚动轴承 故障诊断 模糊熵 体平经验模式分解 Gath-Geva聚类
下载PDF
基于总体平均经验模态分解的光纤周界预警系统模式识别方法 被引量:25
15
作者 蒋立辉 盖井艳 +3 位作者 王维波 熊兴隆 梁生 盛新志 《光学学报》 EI CAS CSCD 北大核心 2015年第10期52-58,共7页
针对光纤周界预警系统输出信号的非平稳特性,提出了一种基于总体平均经验模态分解(EEMD)的模式识别方法。预警系统基于Mach-Zehnder干涉原理,利用4条单模光纤构成分布式扰动传感器,实时监测周界入侵事件。该方法引用具有自适应性的EEMD... 针对光纤周界预警系统输出信号的非平稳特性,提出了一种基于总体平均经验模态分解(EEMD)的模式识别方法。预警系统基于Mach-Zehnder干涉原理,利用4条单模光纤构成分布式扰动传感器,实时监测周界入侵事件。该方法引用具有自适应性的EEMD算法将振动信号分解成多个本征模态函数(IMF)。根据不同振动信号能量各异的特点,提出EEMD能量熵的方法排除非入侵的干扰。最后建立双重支持向量机对入侵信号进行识别。实验结果表明:该方法可以有效排除非人为入侵的干扰,准确识别攀爬、敲击和其他虚警信号,平均正确识别率优于92%,提高了系统的报警识别率,降低了误报率。 展开更多
关键词 光纤光学 Mach-Zehnder干涉 体平经验模态分解 能量熵 模式识别
原文传递
基于EEMD和TLS-ESPRIT的谐波间谐波检测方法 被引量:24
16
作者 于兴林 李慧敏 李天云 《电力系统保护与控制》 EI CSCD 北大核心 2014年第4期67-72,共6页
总体平均经验模态分解(EEMD)可以在噪声环境下对信号进行准确的分解,克服了EMD分解过程中产生频率混叠和虚假模态的缺陷。总体最小二成旋转不变技术(TLS-ESPRIT)算法本身具有很好的消噪能力,用TLS-ESPRIT算法可以准确地辨识出信号的参... 总体平均经验模态分解(EEMD)可以在噪声环境下对信号进行准确的分解,克服了EMD分解过程中产生频率混叠和虚假模态的缺陷。总体最小二成旋转不变技术(TLS-ESPRIT)算法本身具有很好的消噪能力,用TLS-ESPRIT算法可以准确地辨识出信号的参数。结合两者的优点,提出了基于EEMD和TLS-ESPRIT的谐波、间谐波检测方法,结合EEMD分解后的各阶分量的能量来确定电网中真实的谐波、间谐波分量。仿真结果验证了所提方法的可行性和有效性。 展开更多
关键词 体平经验模态分解 TLS—ESPRIT 信号能量 谐波 间谐波
下载PDF
奇异值熵和支持向量机的齿轮故障诊断 被引量:24
17
作者 张超 陈建军 +1 位作者 杨立东 徐亚兰 《振动.测试与诊断》 EI CSCD 北大核心 2011年第5期600-604,665,共5页
提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法。首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征... 提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法。首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征模式分量自动形成初始特征向量矩阵;然后,对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并对其进行归一化,求得奇异值熵,根据奇异值熵值大小可以判断齿轮的故障类型;最后,将奇异值故障特征向量作为支持向量机的输入,判断齿轮的工作状态和故障类型。试验结果表明,即使在小样本情况下,基于EEMD奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型。 展开更多
关键词 体平经验模态分解 奇异值熵 支持向量机 本征模式分量 故障诊断
下载PDF
EEMD在同时消除脉搏血氧检测中脉搏波信号高频噪声和基线漂移中的应用 被引量:20
18
作者 韩庆阳 王晓东 +1 位作者 李丙玉 周鹏骥 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1384-1388,共5页
人体血氧饱和度是基于脉搏波信号测量得到的,然而在脉搏波信号采集的过程中存在着由人体呼吸和仪器本身热噪声等带来的基线漂移和高频噪声,影响人体血氧饱和度的测量精度。因此,该文提出一种总体平均经验模态分解(Ensemble Empirical Mo... 人体血氧饱和度是基于脉搏波信号测量得到的,然而在脉搏波信号采集的过程中存在着由人体呼吸和仪器本身热噪声等带来的基线漂移和高频噪声,影响人体血氧饱和度的测量精度。因此,该文提出一种总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与基于排列熵(Permutation Entropy,PE)的信号随机性检测相结合的方法,同时消除基线漂移和高频噪声。对脉搏波信号进行EEMD分解,计算分解到得到的内在模式分量的排列熵,选取阈值,分别判断并剔除代表高频噪声和基线漂移的内在模式分量。最后信号重构就得到同时消除高频噪声和基线漂移的脉搏波信号。通过自行研制的测量装置所采集的脉搏波信号进行实验验证,利用信号的频谱和交直流比R评价效果。结果表明:该方法有效地同时消除了脉搏波信号中的高频噪声和基线漂移,这将有利于人体血氧饱和度测量精度的提高。 展开更多
关键词 脉搏波信号 人体血氧饱和度 高频噪声 基线漂移 体平经验模态分解 排列熵
下载PDF
基于快速谱峭度图的EEMD内禀模态分量选取方法 被引量:20
19
作者 蒋超 刘树林 +1 位作者 姜锐红 王波 《振动.测试与诊断》 EI CSCD 北大核心 2015年第6期1173-1178,1206,共6页
针对在总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的多个内禀模态分量(intrinsic mode function,简称IMF)中,如何选取出反应故障特征的敏感IMF的问题,提出一种基于快速谱峭度图的敏感IMF选取方法。由EEMD... 针对在总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的多个内禀模态分量(intrinsic mode function,简称IMF)中,如何选取出反应故障特征的敏感IMF的问题,提出一种基于快速谱峭度图的敏感IMF选取方法。由EEMD分解获得的一组无模式混淆的IMF,计算原信号及各个IMF的快速谱峭度图,选择每个快速谱峭度图中谱峭度最大值所处的频带作为参考频带,比较各个IMF的参考频带与原信号谱峭度最大值所处频带之间的从属关系,筛选出反应故障特征的敏感IMF,为后续故障诊断提供特征信息。将该方法应用于模拟仿真信号及滚动轴承滚动体故障信号,验证了方法的有效性。 展开更多
关键词 体平经验模式分解 快速谱峭度图 冲击信号 故障诊断
下载PDF
基于EEMD分解和奇异值差分谱理论的轴承故障诊断研究 被引量:18
20
作者 董文智 张超 《机械强度》 CAS CSCD 北大核心 2012年第2期183-189,共7页
提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和奇异值差分谱的轴承故障诊断方法。首先将非平稳的原始轴承振动信号通过EEMD方法分解成若干个平稳的本征模函数(intrinsic modefunction,IMF);由于背... 提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和奇异值差分谱的轴承故障诊断方法。首先将非平稳的原始轴承振动信号通过EEMD方法分解成若干个平稳的本征模函数(intrinsic modefunction,IMF);由于背景噪声的影响,从各个IMF的频谱中难以准确地得到故障频率。对IMF分量构建Hankel矩阵,并进行奇异值分解,进一步找到奇异值差分谱,根据奇异值差分谱理论对某IMF分量进行消噪和重构,然后再求其频谱,便能准确地得到故障频率。实验结果表明,所提出的方法能有效地应用于轴承的故障诊断。 展开更多
关键词 体平经验模态分解 奇异值差分谱 本征模函数 HANKEL矩阵
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部