设R是一个环,M是一个R-双边模,m和n是两个非负整数满足m+n≠0,如果δ是一个从R到M的可加映射满足对任意A∈R,(m+n)δ(A^2)=2mAδ(A)+2nδ(A)A,则称δ是一个(m,n)-Jordan导子.本文证明了,如果R是一个单位环,M是一个单位R-双边模含有一个...设R是一个环,M是一个R-双边模,m和n是两个非负整数满足m+n≠0,如果δ是一个从R到M的可加映射满足对任意A∈R,(m+n)δ(A^2)=2mAδ(A)+2nδ(A)A,则称δ是一个(m,n)-Jordan导子.本文证明了,如果R是一个单位环,M是一个单位R-双边模含有一个由R中幂等元代数生成的左(右)分离集,那么,当m,n>0且m≠n时,每一个从R到M的(m,n)-Jordan导子恒等于零.还证明了,如果A和B是两个单位环,M是一个忠实的单位(A,B)-双边模(N是一个忠实的单位(B,A)-双边模),m,n>0且m≠n,U=[A N M B]是一个|mn(m-n)(m+n)|-无挠的广义矩阵环,那么每一个从U到自身的(m,n)-Jordan导子恒等于零.展开更多
文摘设R是一个环,M是一个R-双边模,m和n是两个非负整数满足m+n≠0,如果δ是一个从R到M的可加映射满足对任意A∈R,(m+n)δ(A^2)=2mAδ(A)+2nδ(A)A,则称δ是一个(m,n)-Jordan导子.本文证明了,如果R是一个单位环,M是一个单位R-双边模含有一个由R中幂等元代数生成的左(右)分离集,那么,当m,n>0且m≠n时,每一个从R到M的(m,n)-Jordan导子恒等于零.还证明了,如果A和B是两个单位环,M是一个忠实的单位(A,B)-双边模(N是一个忠实的单位(B,A)-双边模),m,n>0且m≠n,U=[A N M B]是一个|mn(m-n)(m+n)|-无挠的广义矩阵环,那么每一个从U到自身的(m,n)-Jordan导子恒等于零.
基金Supported in part by NSFC(No.11401009)Anhui Provincial Natural Science Foundation(No.1408085QA01)the Key Natural Science Foundation of Anhui Educational Committee(No.KJ2014A082)