期刊文献+

广义矩阵环的拟幂零元

Quasi-nilpotent Elements of Generalized Matrix Rings
下载PDF
导出
摘要 设R是有单位元的结合环,Ks(R)为以s为乘子的广义矩阵环,其中s为R的中心元素.记Rqnil为环R的所有拟幂零元构成的集合.借助交换环上广义矩阵环的凯莱—哈密尔顿定理证明了环R为交换环时Ks(R)qnil与R的Jacobson根之间的关系,改进了王周和陈建龙2012年给出的交换环上矩阵环的相应结果. Let R be an associative ring with identity, and let Ks (R) be the generalized matrix ring over R where s is in the center of R. The set of all of the quasi-nilpotent elements of R was denoted by Rq"i~. The quasi-nilpotent elements of generalized matrix rings Ks (R) over a commutative local ring R was mainly studied using the Cayley-Hamilton theorem over genenralized matrix rings. The relation between Ks (R) qnil and the Jacobson radical of R was given. The corresponding result of matrix rings over commut- ative rings was improved.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2013年第3期6-8,12,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 国家数学天元青年基金资助项目 编号11226071
关键词 广义矩阵环 拟幂零元 JACOBSON根 局部环 generalized matrix ring quasi-nilpotent elements Jacobson radical local ring
  • 相关文献

参考文献13

  • 1Morita K. Duality for modules and its applications to the theory of rings with minimum condition [ J ]. Science Reports of the To- kyo Kyoiku Daigaku:Sect A,1958,6(150) : 83 - 142. 被引量:1
  • 2Borooah G, Diesl A J, Dorsey T J. Strongly clean matrix rings over commutative local rings [ J ]. J Pure Appl Algebra,2008,212 (1) : 281 - 296. 被引量:1
  • 3Krylov P A, Tuganbaev A A. Modules over formal matrix rings [ J ]. Journal of Mathematical Sciences,2010,171 ( 2 ) : 248 - 295. 被引量:1
  • 4郭勇华,易忠.Quasi-dual模和V-环的一个新的推广(英文)[J].广西师范大学学报(自然科学版),2005,23(3):33-37. 被引量:1
  • 5解晓娟,宋贤梅.中心弱Armendariz环[J].郑州大学学报(理学版),2012,44(2):10-12. 被引量:2
  • 6Tang Gaohua, Zhou Yiqiang. A class of formal matrix rings [ J ]. Linear Algebra Appl,2013,438 ( 12 ) :4672 - 4688. 被引量:1
  • 7Tang Gaohua,Zhou Yiqiang. Strong cleanness of generalized matrix tings over a local ring[J]. Linear Algebra Appl,2012,437 (10) : 2546 - 2559. 被引量:1
  • 8Harte R E. On quasinilpotents in rings[ J]. Panamer Math J, 1991 (1) : 10-16. 被引量:1
  • 9Koliha J J, Patricio P. Elements of rings with equal spectral idempotents[ J]. J Austral Math Soc,2002,72( 1 ) :137 - 152. 被引量:1
  • 10Ying Zhiling, Chen Jianlong. On quasipolar rings [J].Algebra Colloq,2012,19 (4) : 683 - 692. 被引量:1

二级参考文献29

  • 1李珊珊,汪明义.关于P-平坦模[J].广西师范大学学报(自然科学版),2004,22(4):36-40. 被引量:14
  • 2Page S S,Zhou Y. Quasi-dual rings[J]. Comm Algebra,2000,28(1):489-504. 被引量:1
  • 3Anderson F W,Fuller K R. Rings and categories of modules[M]. Berlin:Springer-Verlag, 1974. 被引量:1
  • 4Lam T Y. Lectures on modules and rings[M]. Berlin:Springer-Verlag,1998. 被引量:1
  • 5Ramamurthy V S,Rangaswamy K M. Generalised V-rings[J].Math Scandinavica,1972,31:69-77. 被引量:1
  • 6Varadarajan K. Generalised V-rings and torsion theories[J]]. Comm Algebra,1986,14(3):455-467. 被引量:1
  • 7Baccela G. Generalized V-rings and yon Neumann regular rings[J].Rend Sem Mat Univ Padova,1984,72:117-133. 被引量:1
  • 8Tominaga H. On S-unital rings[J]. Math J Okayama Univ,1976,18:117-133. 被引量:1
  • 9Yousif M F. V-modules with Krull dimension[J]. Bull Austral Math Soc, 1988,37:237-240. 被引量:1
  • 10Faith C,Menal P. A new duality theorem for semisimple modules and characterization of Villamayor rings[J]]. Proc Amer Math Soc,1995,123(6) :1 635-1 637. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部