针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法...针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法进行修改,解决传统图像识别算法在图像存在尺度和旋转变换情况下存在的弊端并降低误匹配率。该方法对ORB算法检测到的特征点采用SURF(Speeded Up Robust Features)算法添加方向信息并完成特征描述,得到旋转尺度不变性的特征点,结合FLANN算法并引入双向匹配策略进行特征点粗匹配,最后利用渐进采样一致算法进一步剔除误匹配点对完成精匹配。实验结果表明,与其他方法相比,改进算法在处理尺度、旋转等变换图像时,匹配正确率分别提高了2.6%~18.8%和29.5%~43.9%,运行时长均在4 s以内,提高了对工件图像的识别效率和精准性。展开更多
针对噪声影响工件图像分割、跟踪等问题,给出一种基于自适应平方变换方法.首先将噪声图像中提取的噪声图像块减去块均值,固定稀疏水平,学习平方变换,更新稀疏水平,作为下一次学习平方变换的稀疏水平,然后更新迭代学习平方变换和稀疏水平...针对噪声影响工件图像分割、跟踪等问题,给出一种基于自适应平方变换方法.首先将噪声图像中提取的噪声图像块减去块均值,固定稀疏水平,学习平方变换,更新稀疏水平,作为下一次学习平方变换的稀疏水平,然后更新迭代学习平方变换和稀疏水平,最后一次迭代的去噪块的均值估计作为去噪图像.实验结果表明,给出的方法能较好地滤除噪声.与核奇值分解(K-SVD,kernal singular value decompostion)算法相比,该算法去噪后图像的峰值信噪比(PSNR,peak signal to noise ratio)约是K-SVD算法的2倍,去噪速度是K-SVD的3.9倍.展开更多
文摘针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法进行修改,解决传统图像识别算法在图像存在尺度和旋转变换情况下存在的弊端并降低误匹配率。该方法对ORB算法检测到的特征点采用SURF(Speeded Up Robust Features)算法添加方向信息并完成特征描述,得到旋转尺度不变性的特征点,结合FLANN算法并引入双向匹配策略进行特征点粗匹配,最后利用渐进采样一致算法进一步剔除误匹配点对完成精匹配。实验结果表明,与其他方法相比,改进算法在处理尺度、旋转等变换图像时,匹配正确率分别提高了2.6%~18.8%和29.5%~43.9%,运行时长均在4 s以内,提高了对工件图像的识别效率和精准性。
文摘针对噪声影响工件图像分割、跟踪等问题,给出一种基于自适应平方变换方法.首先将噪声图像中提取的噪声图像块减去块均值,固定稀疏水平,学习平方变换,更新稀疏水平,作为下一次学习平方变换的稀疏水平,然后更新迭代学习平方变换和稀疏水平,最后一次迭代的去噪块的均值估计作为去噪图像.实验结果表明,给出的方法能较好地滤除噪声.与核奇值分解(K-SVD,kernal singular value decompostion)算法相比,该算法去噪后图像的峰值信噪比(PSNR,peak signal to noise ratio)约是K-SVD算法的2倍,去噪速度是K-SVD的3.9倍.