期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于改进PSO算法的动态环境经济调度研究 被引量:5
1
作者 稳国栋 《黑龙江电力》 CAS 2017年第2期120-124,共5页
为解决现代电力系统经济调度同一种调度方案不能应用在所有时段的问题,建立了动态环境经济调度(dynamic emission economic dispatch,DEED)模型,这种模型结合了环境经济调度(economic emission dispatch,EED)和动态经济调度(dynamic eco... 为解决现代电力系统经济调度同一种调度方案不能应用在所有时段的问题,建立了动态环境经济调度(dynamic emission economic dispatch,DEED)模型,这种模型结合了环境经济调度(economic emission dispatch,EED)和动态经济调度(dynamic economic dispatch,DED)两种耦合模型。其中目标函数和约束条件分别考虑了阀点效应和机组的爬坡限制,因此更加接近实际经济调度。DEED通常采用的方案是将其转换为多个单目标问题进行求解,但无法保证获得全局最优解。为此,采用小世界PSO算法,通过结合小世界网络思想和粒子群算法(PSO)的寻优方式,将邻域思想转化到模型求解过程中,充分利用了算法在求解DEED问题上的优势。采用经典的10机组电力系统作为算例进行仿真,结果验证了模型的正确性和算法的实用性。 展开更多
关键词 动态环境经济调度 目标优化问题 小世界PSO算法.
下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
2
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
下载PDF
Gravitational search algorithm for coordinated design of PSS and TCSC as damping controller 被引量:2
3
作者 M.Eslami H.Shareef +1 位作者 A.Mohamed M.Khajehzadeh 《Journal of Central South University》 SCIE EI CAS 2012年第4期923-932,共10页
A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyr... A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations. 展开更多
关键词 gravitational search algorithm power system stabilizer thyristor controlled series capacitor tuning
下载PDF
Optimal design of functionally graded Pm PV/CNT nanocomposite cylindrical tube for purpose of torque transmission 被引量:1
4
作者 Abolfazl Khalkhali Sharif Khakshournia Parvaneh Saberi 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期362-369,共8页
Carbon nanotube(CNT)/polymer nanocomposites have vast application in industry because of their light mass and high strength. In this work, a cylindrical tube which is made up of functionally graded(FG) PmP V/CNT nanoc... Carbon nanotube(CNT)/polymer nanocomposites have vast application in industry because of their light mass and high strength. In this work, a cylindrical tube which is made up of functionally graded(FG) PmP V/CNT nanocomposite, is optimally designed for the purpose of torque transmission. The main confining parameters of a rotating shaft in torque transmission process are mass of the shaft, critical speed of rotation and critical buckling torque. It is required to solve a multi-objective optimization problem(MOP) to consider these three targets simultaneously in the process of design. The three-objective optimization problem for this case is defined and solved using a hybrid method of FEM and modified non-dominated sorting genetic algorithm(NSGA-II), by coupling two softwares, MATLAB and ABAQUS. Optimization process provides a set of non-dominated optimal design vectors. Then, two methods, nearest to ideal point(NIP) and technique for ordering preferences by similarity to ideal solution(TOPSIS), are employed to choose trade-off optimum design vectors. Optimum parameters that are obtained from this work are compared with the results of previous studies for similar cylindrical tubes made from composite or a hybrid of aluminum and composite that more than 20% improvement is observed in all of the objective functions. 展开更多
关键词 NANOCOMPOSITE carbon nanotube (CNT) fimctionally graded materials (FGM) cylindrical tube finite element method(FEM) modified NSGA-II technique for ordering preferences by similarity to ideal solution (TOPSIS) nearest to ideal point (NIP)
下载PDF
A robust multi-objective and multi-physics optimization of multi-physics behavior of microstructure
5
作者 Hamda Chagraoui Mohamed Soula Mohamed Guedri 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3225-3238,共14页
A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust c... A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust collaborative (IMORCO). In this work, the proposed IMORCO approach combined the IMOCO method, the worst possible point (WPP) constraint cuts and the Genetic algorithm NSGA-II type as an optimizer in order to solve the robust optimization problem of multi-physics of microstructures with uncertainties. The optimization problem is hierarchically decomposed into two levels: a microstructure level, and a disciplines levels, For validation purposes, two examples were selected: a numerical example, and an engineering example of capacitive micro machined ultrasonic transducers (CMUT) type. The obtained results are compared with those obtained from robust non-distributed and distributed optimization approach, non-distributed multi-objective robust optimization (NDMORO) and multi-objective collaborative robust optimization (McRO), respectively. Results obtained from the application of the IMOCO approach to an optimization problem of a CMUT cell have reduced the CPU time by 44% ensuring a Pareto front close to the reference non-distributed multi-objective optimization (NDMO) approach (mahalanobis distance, D2M =0.9503 and overall spread, So=0.2309). In addition, the consideration of robustness in IMORCO approach applied to a CMUT cell of optimization problem under interval uncertainty has reduced the CPU time by 23% keeping a robust Pareto front overlaps with that obtained by the robust NDMORO approach (D2M =10.3869 and So=0.0537). 展开更多
关键词 multi-physics multi-objective optimization robust optimization collaborative optimization non-distributed anddistributed optimization uncertainty interval
下载PDF
Decision Making with Genetic Algorithm for Computer System Design
6
作者 Omar Saeed Al-Mushayt 《通讯和计算机(中英文版)》 2010年第5期12-18,共7页
关键词 计算机系统设计 遗传算法 目标优化问题 决策 人工智能技术 优化问题 设计时间 结构描述
下载PDF
Multiobjective Optimization of Truss Topology by Linear/Sequential Linear Programming Method
7
作者 Toyofumi Takada 《Journal of Mechanics Engineering and Automation》 2012年第10期585-593,共9页
The present paper deals with a multiobjective optimization of truss topology by either Sequential Linear Programming (SLP) method or Linear Programming (LP) method. The ground structure approach is often used to s... The present paper deals with a multiobjective optimization of truss topology by either Sequential Linear Programming (SLP) method or Linear Programming (LP) method. The ground structure approach is often used to solve this kind of design problems. In this paper, the topology optimization is formulated as a Multiobjective Optimization Problem (MOP), which is to find the cross-sectional area of truss members, such that both the total volume of members and the weighted mean compliance are minimized. Based upon the Karush-Kuhn-Tucker conditions (the optimality condition), the Pareto optimal front of this problem can be obtained theoretically. The truss topology optimization under multiple load cases can be solved by the SLP. On the other hand, the LP such as the Simplex method or the interior point method can be applied to find one of the Pareto optimal solutions of the MOP under single load case. The applications of either the SLP or the LP are illustrated in numerical examples with discussion on characteristics of design results. 展开更多
关键词 Topology optimization multiobjective optimization multi load cases single load case.
下载PDF
Parameter optimization of electric bus transmission system based on dynamical evolutionary algorithm
8
作者 王文伟 Zhu +2 位作者 Cheng Lin Cheng 《High Technology Letters》 EI CAS 2010年第1期29-33,共5页
The transmission ratio is the key parameters influence power performance and economic performance of electric vehicle (EV). As a class of heuristic algorithms, Dynamical Evolutionary Algorithm (DEA) is suitable to... The transmission ratio is the key parameters influence power performance and economic performance of electric vehicle (EV). As a class of heuristic algorithms, Dynamical Evolutionary Algorithm (DEA) is suitable to solve multi-objective optimization problems. This paper presents a new method to optimize the transmission ratio using DEA. The fuzzy constraints and objective function of transmission ratio are established for parameter optimization problem of electric bus transmission. DEA is used to solve the optimiza- tion problem. The transmission system is also designed based on the optimization result. Optimization and test results show that the dynamical evolutionary algorithm is an effective method to solve transmission parameter optimization problems. 展开更多
关键词 transmission system parameter optimization dynamical evolutionary algorithm (DEA) electric bus
下载PDF
An Integrated Approach for Decision Support through Multi-objective Optimization with Application to an Ill-posed Design Problem
9
作者 Yoshiaki Shimizu Yasumasa Kato Takeshi Kariyahara 《Computer Technology and Application》 2011年第11期912-925,共14页
In the current scenario of global competition and short product life cycles, customer-defined satisfaction has attracted interest in artifact design. Accordingly, intelligent decision-making through multi-objective op... In the current scenario of global competition and short product life cycles, customer-defined satisfaction has attracted interest in artifact design. Accordingly, intelligent decision-making through multi-objective optimization has been proposed as an efficient method for human-centered manufacturing. However, previous vast researches on optimization have been mainly focused on optimization theory and optimization techniques and paid little interests on the process of problem formulation itself. In this paper, therefore, the authors present a total framework for supporting multi-objective decision making. Then, the authors try to solve the formulated multi-objective optimization problem that involves both qualitative and quantitative performance measures as a general consequence from the above procedure. Taking especially quality as a qualitative measure, the authors gave a new idea to evaluate the quality quantitatively. Additionally, to facilitate the portability of the proposed method in multidisciplinary decision-making environments, the authors implement the proposal algorithm in an Excel spreadsheet and validate the effectiveness of the approach through a case study. 展开更多
关键词 Integrated systems approach optimization engineering multi-objective optimization META-MODELING value system design.
下载PDF
Trade-off between Energy and Delay Based on a Multi-objective Optimization Problem for Wireless Sensor Network
10
作者 Tran Cong Hung Bui Khac Xuan Tinh Huynh Trong Thua 《通讯和计算机(中英文版)》 2016年第4期185-194,共10页
关键词 无线传感器网络 能量消耗 目标优化问题 权衡 数据转发 能源消耗 搜索空间 传感器技术
下载PDF
On ε-Constraint Based Methods for the Generation of Pareto Frontiers
11
作者 Kenneth Chircop David Zammit-Mangion 《Journal of Mechanics Engineering and Automation》 2013年第5期279-289,共11页
Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem d... Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem definition. The most commonly applied methods are the normal constraint method and the normal boundary intersection method. The former suffers from the deficiency of an uneven Pareto set distribution in the case of vertical (or horizontal) sections in the Pareto frontier, whereas the latter suffers from a sparsely populated Pareto frontier when the optimization problem is numerically demanding (ill-conditioned). The method proposed in this paper, coupled with a simple Pareto filter, addresses these two deficiencies to generate a uniform, globally optimal, well-populated Pareto frontier for any feasible bi-objective optimization problem. A number of examples are provided to demonstrate the performance of the algorithm. 展开更多
关键词 Pareto frontier multiobjective optimization scalarization methods ε-constraint methods design optimization.
下载PDF
上图像拓扑与多目标优化问题加权解的通有稳定性 被引量:10
12
作者 彭定涛 曹素元 《运筹学学报》 CSCD 北大核心 2006年第4期81-88,共8页
用函数的上图象之间的Hausdorff距离定义向量值函数间的距离,在此弱拓扑下研究了多目标优化问题加权解关于权因子和目标函数的稳定性,指出加权解关于权因子和目标函数是通有稳定的.
关键词 运筹学 目标优化问题 usco映射 权因子 上图象拓扑 通有稳定
下载PDF
一种有效的基于实数编码的多目标遗传算法 被引量:2
13
作者 田小梅 郑金华 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2005年第2期70-76,共7页
针对实数编码遗传算法提出了一种通用的基于决策变量的复合交叉算子,并将之用于多目标优化问题的求解,算法效果良好,一定程度上解决了高维多目标优化问题在用遗传算法求解时收敛性差这一难题.通过实验首次揭示了交叉点数对多目标遗传算... 针对实数编码遗传算法提出了一种通用的基于决策变量的复合交叉算子,并将之用于多目标优化问题的求解,算法效果良好,一定程度上解决了高维多目标优化问题在用遗传算法求解时收敛性差这一难题.通过实验首次揭示了交叉点数对多目标遗传算法性能的影响. 展开更多
关键词 复合交叉 目标遗传算法 目标优化问题 基于变量交叉
下载PDF
基于自适应多目标进化CNN的图像分割方法
14
作者 王维 王显鹏 宋相满 《控制与决策》 EI CSCD 北大核心 2024年第4期1185-1193,共9页
卷积神经网络已经成为强大的分割模型,但通常为手动设计,这需要大量时间并且可能导致庞大而复杂的网络.人们对自动设计能够准确分割特定领域图像的高效网络架构越来越感兴趣,然而大部分方法或者没有考虑构建更加灵活的网络架构,或者没... 卷积神经网络已经成为强大的分割模型,但通常为手动设计,这需要大量时间并且可能导致庞大而复杂的网络.人们对自动设计能够准确分割特定领域图像的高效网络架构越来越感兴趣,然而大部分方法或者没有考虑构建更加灵活的网络架构,或者没有考虑多个目标优化模型.鉴于此,提出一种称为AdaMo-ECNAS的自适应多目标进化卷积神经架构搜索算法,用于特定领域的图像分割,在进化过程中考虑多个性能指标并通过优化模型的多目标适应特定的数据集.AdaMo-ECNAS可以构建灵活多变的预测分割模型,其网络架构和超参数通过基于多目标进化的算法找到,算法基于自适应PBI实现3个目标进化问题,即提升预测分割的F1-score、最大限度减少计算成本以及最大限度挖掘额外训练潜能.将AdaMo-ECNAS在两个真实数据集上进行评估,结果表明所提出方法与其他先进算法相比具有较高的竞争性,甚至是超越的. 展开更多
关键词 卷积神经网络 神经架构搜索 目标优化问题 基于分解目标进化算法 自适应 图像分割
原文传递
基于分解的多目标花朵授粉算法 被引量:1
15
作者 陈泯融 黄广敬 《计算机与现代化》 2019年第7期1-8,共8页
在过去几十年里,许多多目标进化算法被广泛应用于解决多目标优化问题,其中一种比较流行的多目标进化算法是基于分解的多目标进化算法(MOEA/D)。花朵授粉算法是一种启发式优化算法,但迄今为止,花朵授粉算法在基于分解的多目标进化算法领... 在过去几十年里,许多多目标进化算法被广泛应用于解决多目标优化问题,其中一种比较流行的多目标进化算法是基于分解的多目标进化算法(MOEA/D)。花朵授粉算法是一种启发式优化算法,但迄今为止,花朵授粉算法在基于分解的多目标进化算法领域的研究还非常少。本文在基于分解的多目标进化算法的框架下,将花朵授粉算法拓展至多目标优化领域,提出一种基于分解的多目标花朵授粉算法(MOFPA/D)。此外,为了保证非支配解的多样性,本文提出一种基于网格的目标空间分割法,该方法从找到的Pareto最优解集中筛选出一定数量且分布均匀的Pareto最优解。实验结果表明,基于分解的多目标花朵授粉算法在收敛性与多样性方面均优于基于分解的多目标进化算法。 展开更多
关键词 目标优化问题 基于分解目标进化算法 花朵授粉算法 非支配解 基于网格方法
下载PDF
多目标优化问题近似解的一类标量化方法
16
作者 张琦 刘佳星 赵克全 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2020年第1期86-90,共5页
【目的】研究多目标优化问题近似解的一类标量化方法。【方法】利用Ehrgott和Ruzika提出的多目标优化问题的标量化模型。【结果】建立了基于co-radiant集定义的(C,ε)-近似解和改进集定义的E-近似解的一些标量化结果,并提出了一些例子... 【目的】研究多目标优化问题近似解的一类标量化方法。【方法】利用Ehrgott和Ruzika提出的多目标优化问题的标量化模型。【结果】建立了基于co-radiant集定义的(C,ε)-近似解和改进集定义的E-近似解的一些标量化结果,并提出了一些例子对主要结果进行了解释。【结论】所得结果为设计求解多目标优化问题近似解的最优算法提供理论与方法基础。 展开更多
关键词 目标优化问题 (C ε)-近似解 E-近似解 改进ε-约束法
原文传递
多目标优化中ε-真有效解的一个注记
17
作者 夏丹丹 陈美杉 刘学文 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2021年第2期1-6,共6页
【目的】利用改进的约束标量化方法研究多目标优化ε-真有效解的标量化性质。【方法】首先对在已有研究的基础上,对ε-真有效解的标量化结果进行分析,通过严格的推理发现有两个条件是相互矛盾的。进一步地,引入新的条件对该结果进行修... 【目的】利用改进的约束标量化方法研究多目标优化ε-真有效解的标量化性质。【方法】首先对在已有研究的基础上,对ε-真有效解的标量化结果进行分析,通过严格的推理发现有两个条件是相互矛盾的。进一步地,引入新的条件对该结果进行修正。【结果】利用改进的约束标量化方法在新的条件下建立了多目标优化问题中ε-真有效解的标量化结果。此外,也举例对主要结果进行说明。【结论】获得的标量化结果不仅对已有文献中的结论进行了修正,同时也为研究多目标优化问题中解的性质提供新的思路。 展开更多
关键词 改进约束标量化方法 目标优化问题 ε-真有效解
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部