SiC金属-氧化物-半导体场效应晶体管(MOSFET)作为车用电机控制器功率单元的核心器件,其并联不均流问题是影响电机控制器安全稳定运行的关键因素。对于热增强塑料封装(TPAK)SiC MOSFET功率模块实际应用中的不均流问题,首先通过理论推导...SiC金属-氧化物-半导体场效应晶体管(MOSFET)作为车用电机控制器功率单元的核心器件,其并联不均流问题是影响电机控制器安全稳定运行的关键因素。对于热增强塑料封装(TPAK)SiC MOSFET功率模块实际应用中的不均流问题,首先通过理论推导和仿真,对影响SiC并联均流的器件参数、功率回路参数、驱动回路参数进行了全面的分析总结。然后结合仿真结果对电机控制器进行均流优化设计,其中包括对TPAK SiC MOSFET进行测试、筛选和分析,减小器件参数分散性的影响;基于器件开关特性,对功率模块的驱动回路采用单驱动器多推挽结构,减小驱动回路对并联均流的影响;设计了一种叠层母排结构,在ANSYS Q3D中提取到功率回路寄生电感为9.649 nH,采用ANSYS Q3D和Simplorer进行联合双脉冲仿真,电流不均衡度小于3%。最后,进行了电机控制器样机的试制及测试,实际测试结果表明电流不均衡度小于5%,验证了在车用电机控制器应用中TPAK SiC MOSFET模块均流设计的可行性。展开更多
文摘SiC金属-氧化物-半导体场效应晶体管(MOSFET)作为车用电机控制器功率单元的核心器件,其并联不均流问题是影响电机控制器安全稳定运行的关键因素。对于热增强塑料封装(TPAK)SiC MOSFET功率模块实际应用中的不均流问题,首先通过理论推导和仿真,对影响SiC并联均流的器件参数、功率回路参数、驱动回路参数进行了全面的分析总结。然后结合仿真结果对电机控制器进行均流优化设计,其中包括对TPAK SiC MOSFET进行测试、筛选和分析,减小器件参数分散性的影响;基于器件开关特性,对功率模块的驱动回路采用单驱动器多推挽结构,减小驱动回路对并联均流的影响;设计了一种叠层母排结构,在ANSYS Q3D中提取到功率回路寄生电感为9.649 nH,采用ANSYS Q3D和Simplorer进行联合双脉冲仿真,电流不均衡度小于3%。最后,进行了电机控制器样机的试制及测试,实际测试结果表明电流不均衡度小于5%,验证了在车用电机控制器应用中TPAK SiC MOSFET模块均流设计的可行性。
文摘采用金属有机化学气相沉积(MOCVD)方法在(010)Fe掺杂半绝缘Ga2O3同质衬底上外延得到n型β-Ga2O3薄膜材料,材料结构包括400 nm的非故意掺杂Ga2O3缓冲层和40 nm的Si掺杂Ga2O3沟道层。基于掺杂浓度为2.0×1018cm-3的n型β-Ga2O3薄膜材料,采用原子层沉积的25 nm的HfO2作为栅下绝缘介质层,研制出Ga2O3金属氧化物半导体场效应晶体管(MOSFET)。器件展示出良好的电学特性,在栅偏压为8 V时,漏源饱和电流密度达到42 m A/mm,器件的峰值跨导约为3.8 m S/mm,漏源电流开关比达到108。此外,器件的三端关态击穿电压为113 V。采用场板结构并结合n型Ga2O3沟道层结构优化设计能进一步提升器件饱和电流和击穿电压等电学特性。