期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
基于机器视觉的智能垃圾分类装置 被引量:1
1
作者 李林宇 何烨明 董悦颖 《信息与电脑》 2023年第4期143-145,共3页
文章设计了一种基于机器视觉的智能垃圾分类装置用于垃圾分类。使用树莓派作为主板,依托于Lobe Tensorflow平台使用机器学习算法实现垃圾图像处理功能。通过树莓派Linux操作系统中Python IDE状态栏输出垃圾识别信息,调动由舵机组成的分... 文章设计了一种基于机器视觉的智能垃圾分类装置用于垃圾分类。使用树莓派作为主板,依托于Lobe Tensorflow平台使用机器学习算法实现垃圾图像处理功能。通过树莓派Linux操作系统中Python IDE状态栏输出垃圾识别信息,调动由舵机组成的分拣平台实现智能垃圾分类。基于机器视觉的智能垃圾分类装置具有可学习、成本低、易组装、操作简便以及上手快速等优点。 展开更多
关键词 机器视觉 垃圾分类 学习 成本低
下载PDF
可学习高阶微分方程的图像盲复原
2
作者 程世超 刘日升 樊鑫 《中国图象图形学报》 CSCD 北大核心 2018年第2期249-257,共9页
目的图像盲复原是图像处理中的常见的重要问题之一,具有巨大的研究价值和广泛的应用。通常情况下,相机抖动,聚焦不准,环境噪声等因素都会造成图像模糊。由于图像盲复原需要同时求解模糊核和清晰图像,导致该问题是病态的而难于求解。现... 目的图像盲复原是图像处理中的常见的重要问题之一,具有巨大的研究价值和广泛的应用。通常情况下,相机抖动,聚焦不准,环境噪声等因素都会造成图像模糊。由于图像盲复原需要同时求解模糊核和清晰图像,导致该问题是病态的而难于求解。现有的盲复原方法可以分为两大类,一类是基于最大后验概率来同时估计潜在图像和模糊核的方法,但是这样耦合在一起的方法由于先验条件和初值设置不恰当,常常会导致最终求得的是问题的平凡解,以至于盲复原的效果并不理想。另一类是基于变分贝叶斯来估计模糊核,这种方法通常是采用最大化强边图像的边缘概率,由此估计的模糊核鲁棒性较强,但是对潜在图像的强边条件要求比较高,计算复杂度和实现难度都较大。鉴于以上方法的优缺点,提出基于高阶微分方程学习的方法来实现图像去模糊。方法借鉴传统的迭代演化方法和网络学习方法各自的优势,将网络学习到的特征(引导图像,卷积滤波器,稀疏测度)融入到高阶微分方程的演化过程中区,提出可学习的基于高阶微分方程的演化来模拟图像的演化过程。具体地,先用范数约束得到一个粗略的强边引导图像,然后将学习到的卷积滤波器和稀疏函数一起作用在当前的潜在图像上,得到一个关于图像的更好的梯度下降方向,将此作为微分方程演化的一个步骤,得到一个更为精炼的强边图像。最后用精炼的强边图像来估计模糊核。该方法可以通过先验知识和训练数据来有效地控制模糊核的估计,进而得到较为清晰的盲复原结果。结果在图像建模层面上,用非盲复原的方法验证了本文提出的微分方程演化过程是可行的。通过和其他盲复原方法做对比,在不同的基准图像数据库上的定量的实验中,本文方法在数据库上的峰值信噪比,结构相似度分别达到30.30,0.91,误差率低至 展开更多
关键词 图像盲复原 高阶微分方程演化 模糊核 强边图像 学习
原文传递
高校精品课程网络资源的可学习性研究 被引量:20
3
作者 王佑镁 《中国远程教育》 北大核心 2011年第1期59-62,82,共5页
从软件工程中软件测评的一个重要指标——可学习性的视角,探索高校精品课程网络资源的建设与评价新维度;依据可学习性评估指标,对高校现有12863门各级精品课程采用计算机辅助分层抽样方式进行可学习性评估。结果发现,精品课程网络资源... 从软件工程中软件测评的一个重要指标——可学习性的视角,探索高校精品课程网络资源的建设与评价新维度;依据可学习性评估指标,对高校现有12863门各级精品课程采用计算机辅助分层抽样方式进行可学习性评估。结果发现,精品课程网络资源虽然在界面设计、导航的直观性、链接的有效性等方面基本满足学习需求,但却不能保证学习者顺利使用资源并在过程中感到一定的愉快感或者满足感,这直接影响学习效率和效果。通过可学习性分析与评估可以为新一轮高校精品课程及网络资源建设、应用与评估提供依据和参考指标。 展开更多
关键词 精品课程网络资源 学习 启发性评估
原文传递
基于自适应数据剪辑策略的Tri-training算法 被引量:15
4
作者 邓超 郭茂祖 《计算机学报》 EI CSCD 北大核心 2007年第8期1213-1226,共14页
Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用Remove O... Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用Remove Only剪辑操作对每次迭代可能产生的误标记样例识别并移除,更重要的是采用自适应策略来确定Remove Only触发与抑制的恰当时机.文中证明,PAC理论下自适应策略中一系列判别充分条件可同时确保新训练集规模迭代增大和新假设分类错误率迭代降低更多.UCI数据集上实验结果表明:ADE-Tri-training具有更好的分类泛化性能和健壮性. 展开更多
关键词 半监督学习 数据剪辑 自适应策略 PAC学习 TRI-TRAINING
下载PDF
Boosting算法理论与应用研究 被引量:17
5
作者 张文生 于廷照 《中国科学技术大学学报》 CAS CSCD 北大核心 2016年第3期222-230,共9页
作为机器学习领域最经典算法之一,Boosting是一种学习算法,并广泛应用于机器学习与模式识别各领域.Boosting的理论研究分为可学习理论和统计学两个角度.Boosting最初从弱可学习理论角度阐明了由弱到强的提升算法,从理论上证明了一组优... 作为机器学习领域最经典算法之一,Boosting是一种学习算法,并广泛应用于机器学习与模式识别各领域.Boosting的理论研究分为可学习理论和统计学两个角度.Boosting最初从弱可学习理论角度阐明了由弱到强的提升算法,从理论上证明了一组优于随机猜测的弱学习器通过集成可提升为在训练集上任意精度的强学习器.从统计学的角度看,Boosting是一种叠加模型,理论上二者的等价性已经证明.本文首先从可学习的角度出发,回顾了Boosting算法弱可学习理论,并提出面临的问题及挑战,包括对高维数据的有效性及Margin理论;然后阐述了Boosting算法理论研究分支,并详细回顾了当前最为流行的多种经典Boosting算法及在Boosting理论框架下的新应用;最后探讨了Boosting算法的未来研究趋势. 展开更多
关键词 BOOSTING 学习理论 Margin理论 集成学习 ADABOOST
下载PDF
基于特征级损失和可学习噪声的医学图像域泛化方法
6
作者 史轶伦 于磊 徐巧枝 《计算机应用研究》 CSCD 北大核心 2024年第6期1882-1887,共6页
在医学图像分割任务中,域偏移问题会影响训练好的分割模型在未见域的性能,因此,提高模型泛化性对于医学图像智能模型的实际应用至关重要。表示学习是目前解决域泛化问题的主流方法之一,大多使用图像级损失和一致性损失来监督图像生成,... 在医学图像分割任务中,域偏移问题会影响训练好的分割模型在未见域的性能,因此,提高模型泛化性对于医学图像智能模型的实际应用至关重要。表示学习是目前解决域泛化问题的主流方法之一,大多使用图像级损失和一致性损失来监督图像生成,但是对医学图像微小形态特征的偏差不够敏感,会导致生成图像边缘不清晰,影响模型后续学习。为了提高模型的泛化性,提出一种半监督的基于特征级损失和可学习噪声的医学图像域泛化分割模型FLLN-DG,首先引入特征级损失改善生成图像边界不清晰的问题,其次引入可学习噪声组件,进一步增加数据多样性,提升模型泛化性。与基线模型相比,FLLN-DG在未见域的性能提升2%~4%,证明了特征级损失和可学习噪声组件的有效性,与nnUNet、SDNet+AUG、LDDG、SAML、Meta等典型域泛化模型相比,FLLN-DG也表现出更优越的性能。 展开更多
关键词 医学图像分割 域泛化 表示学习 特征级损失 学习噪声
下载PDF
k-部排序学习算法的可学习性分析 被引量:6
7
作者 兰美辉 甘健侯 +1 位作者 任友俊 高炜 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期177-183,共7页
分析在特定假设空间下k-部排序学习算法的可学习性.给出k-部排序可学习和可有效学习的概念,得到样本复杂度的上界以及k-部排序算法可有效学习的一个充分条件,同时给出与计算复杂度相关的若干结果.最后,将部分结果推广到限制模型中.
关键词 统计学习理论 学习 k-部排序算法 样本复杂度 计算复杂度
下载PDF
基于时空图卷积网络的瓦斯体积分数预警效果研究
8
作者 高翼飞 张晓航 +2 位作者 畅明 葛帅帅 陈伟 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第1期58-64,共7页
为了提升瓦斯体积分数预警效果,提出1种融合时空特征的瓦斯体积分数预警模型(STGCN),以图神经网络作为基本框架对同一工作面多传感器进行统一的训练和推断,并通过图卷积的方式捕捉瓦斯体积分数数据的时空特征。在此基础上,提出瓦斯体积... 为了提升瓦斯体积分数预警效果,提出1种融合时空特征的瓦斯体积分数预警模型(STGCN),以图神经网络作为基本框架对同一工作面多传感器进行统一的训练和推断,并通过图卷积的方式捕捉瓦斯体积分数数据的时空特征。在此基础上,提出瓦斯体积分数分级预警方法,将预测扩展为分级预警。研究结果表明:STGCN在瓦斯体积分数预测和预警任务上取得更好的准确率和效率。研究结果可为矿井瓦斯灾害防治提供参考。 展开更多
关键词 瓦斯体积分数预警 图卷积网络 时空数据 学习矩阵 分级预警方法 煤矿安全
下载PDF
基于约束聚类的一种概念学习方法 被引量:3
9
作者 李敏强 李智 《系统工程学报》 CSCD 2004年第5期482-488,共7页
首先定义了字符属性例子空间中合取规则的可学习性,通过将正例集合划分为多个子集,其中每个子集在全体反例集合上均是合取规则可学习的,并建立了命题规则的一般学习模型.然后,提出了三种正例集合的自动聚类和划分方法:相似性度量、差异... 首先定义了字符属性例子空间中合取规则的可学习性,通过将正例集合划分为多个子集,其中每个子集在全体反例集合上均是合取规则可学习的,并建立了命题规则的一般学习模型.然后,提出了三种正例集合的自动聚类和划分方法:相似性度量、差异度量和规则长度等,并设计了一种快速的合取规则学习方法.同时,基于最小覆盖率和最小错误率给出了一种克服过学习问题的后处理方法.最后,针对一组典型的学习问题进行了实验计算,并与已有算法进行了对比分析. 展开更多
关键词 约束聚类 概念学习 合取规则学习 学习 后处理 机器学习
下载PDF
基于可学习攻击步长的联合对抗训练方法
10
作者 杨时康 柳毅 《计算机应用研究》 CSCD 北大核心 2024年第6期1845-1850,共6页
对抗训练(AT)是抵御对抗攻击的有力手段。然而,现有方法在训练效率和对抗鲁棒性之间往往难以平衡。部分方法提高训练效率但降低对抗鲁棒性,而其他方法则相反。为了找到最佳平衡点,提出了一种基于可学习攻击步长的联合对抗训练方法(FGSM-... 对抗训练(AT)是抵御对抗攻击的有力手段。然而,现有方法在训练效率和对抗鲁棒性之间往往难以平衡。部分方法提高训练效率但降低对抗鲁棒性,而其他方法则相反。为了找到最佳平衡点,提出了一种基于可学习攻击步长的联合对抗训练方法(FGSM-LASS)。该方法包括预测模型和目标模型,其中,预测模型为每个样本预测攻击步长,替代FGSM算法的固定大小攻击步长。接着,将目标模型参数和原始样本输入改进的FGSM算法,生成对抗样本。最后,采用联合训练策略,共同训练预测和目标模型。在与最新五种方法比较时,FGSM-LASS在速度上比鲁棒性最优的LAS-AT快6倍,而鲁棒性仅下降1%;与速度相近的ATAS相比,鲁棒性提升3%。实验结果证明,FGSM-LASS在训练速度和对抗鲁棒性之间的权衡表现优于现有方法。 展开更多
关键词 对抗训练 对抗样本 对抗攻击 预测模型 学习攻击步长
下载PDF
可学习动态分组卷积神经网络的大规模点云分割
11
作者 康玥 杨军 《计算机工程与应用》 CSCD 北大核心 2024年第10期217-226,共10页
针对现有大规模点云语义分割算法提取特征时冗余干扰信息过多,导致神经网络分割性能较差的问题,提出可学习动态分组卷积神经网络架构,高效准确地实现大规模点云分割。对输入点云以分组的方式进行局部几何特征提取,并通过动态筛选和修剪... 针对现有大规模点云语义分割算法提取特征时冗余干扰信息过多,导致神经网络分割性能较差的问题,提出可学习动态分组卷积神经网络架构,高效准确地实现大规模点云分割。对输入点云以分组的方式进行局部几何特征提取,并通过动态筛选和修剪冗余特征通道来减少无用特征信息对神经网络特征识别的干扰,进一步提高网络模型语义分割精度。构建位置编码模块,将点云位置特征映射到高维频域空间,使神经网络充分挖掘点云频域特征信息,增强特征的丰富性。对提取到的局部几何特征和全局单点位置特征进行融合,并构建可学习动态分组卷积神经网络,完成解码得到最终分割结果。实验结果表明,该算法在大规模点云分割数据集S3DIS和SemanticKITTI上的mIoU分别为69.6%和58.3%。与现有点云语义分割方法相比,所提出的网络模型具有更高的分割准确率和较低的参数量。 展开更多
关键词 大规模点云 语义分割 学习动态分组卷积 位置编码
下载PDF
融合注意力机制和多任务学习的机器人抓取检测算法 被引量:1
12
作者 李钰龙 梁新武 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2023年第12期9-17,共9页
抓取主要分为抓取检测、轨迹规划和执行环节,准确的抓取检测是完成抓取任务的关键。为进行更准确的抓取检测,提高机器人抓取性能表现,本研究以关键点检测算法为基础,提出了一种融合注意力和多任务学习的抓取检测算法。首先,针对任务特点... 抓取主要分为抓取检测、轨迹规划和执行环节,准确的抓取检测是完成抓取任务的关键。为进行更准确的抓取检测,提高机器人抓取性能表现,本研究以关键点检测算法为基础,提出了一种融合注意力和多任务学习的抓取检测算法。首先,针对任务特点,在特征提取环节引入CA(coordinate attention)注意力模块,显式的学习通道和空间特征,充分利用特征信息。其次,在损失函数环节加入多任务权重学习算法,学习抓取中心坐标、抓手开合宽度及旋转角度信息的最优权重。最后,在Cornell数据集以及更大规模的Jacquard数据集上进行试验。研究结果表明,所提方法相比滑动窗口和锚框类型等经典方法在检测速率上有明显提升,且与单纯的关键点检测方法相比有更高的准确率,所提模型在两个数据集上分别取得98.8%和95.7%的准确率。检测示例体现出所提模型对于非常规物体也有良好的抓取结果,不同Jaccard系数条件下的抓取结果显示模型在精准抓取方面有优秀性能,而对于权重学习算法的不同初始值试验则表明所提模型具有良好的鲁棒性。此外,通过消融实验分析了不同模块对于模型性能表现的影响程度。 展开更多
关键词 抓取检测 关键点估计 注意力机制 学习权重 深度学习
下载PDF
基于LIR和GFNet的带钢表面缺陷识别
13
作者 刘双辉 易灿灿 +1 位作者 肖涵 黄涛 《组合机床与自动化加工技术》 北大核心 2024年第1期150-155,共6页
针对深度学习(deep learning,DL)模型处理带钢表面缺陷图像存在计算成本大、实时性差的问题,提出了一种基于可学习的图像调整器(learnable image resizer,LIR)和扫视-聚焦网络(glance and focus network,GFNet)的带钢表面缺陷分类方法... 针对深度学习(deep learning,DL)模型处理带钢表面缺陷图像存在计算成本大、实时性差的问题,提出了一种基于可学习的图像调整器(learnable image resizer,LIR)和扫视-聚焦网络(glance and focus network,GFNet)的带钢表面缺陷分类方法。首先,针对DL模型在处理带钢表面缺陷图像时存在空间冗余的问题,提出GFNet驱动的带钢表面缺陷识别模型,其可以根据不同样本自适应分配计算资源,在模型推理阶段显著减少计算量;其次,提出LIR和GFNet联合训练的方法,调整图像大小的同时实现针对识别模型的特征增强;最后,收集整理了某钢铁企业冷轧薄板厂带钢表面缺陷数据集,利用所提方法进行分析。将残差网络(residual networks,ResNet)的ResNet-50模型作为主干网络,与原始ResNet-50比较,所提方法在不牺牲准确率的情况下,将单张图像的推断时间减少约3.58倍,计算量降低约6.11倍,从而验证了提出方法的有效性。 展开更多
关键词 带钢表面缺陷 图像分类 学习的图像调整器 动态神经网络 扫视-聚焦网络
下载PDF
自然场景图像去雨的可学习混合MAP网络 被引量:5
14
作者 马龙 刘日升 +3 位作者 姜智颖 王怡洋 樊鑫 李豪杰 《中国图象图形学报》 CSCD 北大核心 2018年第2期277-285,共9页
目的近年来,人工智能成为新兴研究领域,得到越来越多研究机构的关注。图像恢复问题一直是低层次计算机视觉领域的一个研究热点,其中,图像去雨由于其雨线分布的未知性及其求解的病态性,导致难以解决。现有方法存在雨线和背景之间的估计... 目的近年来,人工智能成为新兴研究领域,得到越来越多研究机构的关注。图像恢复问题一直是低层次计算机视觉领域的一个研究热点,其中,图像去雨由于其雨线分布的未知性及其求解的病态性,导致难以解决。现有方法存在雨线和背景之间的估计具有依赖性,难以平衡雨线去除效果与估计背景的清晰程度之间的关系;局限性比较大,训练数据很难涵盖各种场景下的雨图,而测试结果受训练数据的影响,导致难于泛化。针对上述不足,借鉴一般图像恢复问题思路,将模型与以数据驱动的网络相结合,凸显网络与模型各自的优势,提出可学习的混合MAP网络有效地解决图像去雨问题。方法首先基于最大后验估计(MAP)建立含有隐式先验的能量模型,然后通过优化算法将模型分解为背景估计模型和雨线估计模型两部分,以减少背景估计和雨线估计之间的依赖性。对于背景估计模型,通过对模型及优化目标分析采用以数据驱动的去噪残差网络进行建模,保证估计出的背景更清晰;对于雨线估计模型,为避免直接对未知的雨线建模失去准确性,利用高斯混合模型实时刻画输入雨图的雨线先验。结果在合成数据集Rain12及真实雨图上进行实验,通过综合考虑定量分析和定性分析,并与3种基于模型的方法及两种基于深度网络的方法相比,本文方法在去除雨线的同时能够损失的背景信息最少,合成数据集上的平均结构相似性(SSIM)值达到0.92。结论本文通过将基于模型的方法与基于深度网络的方法相结合,既去除了雨线又保证了估计背景的清晰程度,同时也验证了将传统模型与深度网络相结合是一种解决图像恢复问题的有效途径。 展开更多
关键词 图像去雨 学习混合MAP网络 最大后验估计 高斯混合模型 残差网络
原文传递
面向大姿态人脸识别的正面化形变场学习 被引量:3
15
作者 胡蓝青 阚美娜 +1 位作者 山世光 陈熙霖 《中国图象图形学报》 CSCD 北大核心 2022年第7期2171-2184,共14页
目的人脸识别已经得到了广泛应用,但大姿态人脸识别问题仍未完美解决。已有方法或提取姿态鲁棒特征,或进行人脸姿态的正面化。其中主流的人脸正面化方法包括2D回归生成和3D模型形变建模,前者能够生成相对自然真实的人脸,但会引入额外的... 目的人脸识别已经得到了广泛应用,但大姿态人脸识别问题仍未完美解决。已有方法或提取姿态鲁棒特征,或进行人脸姿态的正面化。其中主流的人脸正面化方法包括2D回归生成和3D模型形变建模,前者能够生成相对自然真实的人脸,但会引入额外的噪声导致图像信息的扭曲;后者能够保持原始的人脸结构信息,但生成过程是基于物理模型的,不够自然灵活。为此,结合2D和3D方法的优势,本文提出了基于由粗到细形变场的人脸正面化方法。方法该形变场由深度网络以2D回归方式学得,反映的是不同视角人脸图像像素之间的语义级对应关系,可以类3D的方式实现非正面人脸图像的正面化,因此该方法兼具了2D正面化方法的灵活性与3D正面化方法的保真性,且借鉴分步渐进的思路,本文提出了由粗到细的形变场学习框架,以获得更加准确鲁棒的形变场。结果本文采用大姿态人脸识别实验来验证本文方法的有效性,在MultiPIE(multi pose,illumination,expressions)、LFW(labeled faces in the wild)、CFP(celebrities in frontal-profile in the wild)、IJB-A(intelligence advanced research projects activity Janus benchmark-A)等4个数据集上均取得了比已有方法更高的人脸识别精度。结论本文提出的基于由粗到细的形变场学习的人脸正面化方法,综合了2D和3D人脸正面化方法的优点,使人脸正面化结果的学习更加灵活、准确,保持了更多有利于识别的身份信息。 展开更多
关键词 大姿态人脸识别 人脸正面化 学习形变场 由粗到细学习 全卷积网络
原文传递
一种基于混合索引的最近邻查找方法
16
作者 彭永鑫 罗英 《商洛学院学报》 2023年第4期31-35,53,共6页
针对某些场景下可学习KD树模型在最近邻查找中准确率较低的问题,提出了一种基于可学习索引模型和传统KD树的混合索引结构。该结构将待查找数据同时输入已经训练好的可学习KD树模型和KD树中得到若干个候选的k近邻点,从而将可学习索引模... 针对某些场景下可学习KD树模型在最近邻查找中准确率较低的问题,提出了一种基于可学习索引模型和传统KD树的混合索引结构。该结构将待查找数据同时输入已经训练好的可学习KD树模型和KD树中得到若干个候选的k近邻点,从而将可学习索引模型在查找效率和传统索引方法在查找准确率上的优点相结合。试验结果证明,使用基于可学习索引模型的可学习KD树和树形结构KD树的混合索引,综合了两者在最近邻查找中的优点,实现了查找效率和查找精度的平衡,满足了多种条件下的查找需求。 展开更多
关键词 学习索引 最近邻查找 混合索引
下载PDF
一种嵌入式轻量化卷积神经网络计算加速方法
17
作者 谢媛媛 刘一睿 +2 位作者 陈迟晓 康晓洋 张立华 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1345-1351,共7页
针对传统ARM处理器算力低、不适用于实时性需求比较高的应用场景的问题,本文提出了一种基于ARM处理器的单指令多数据(Single Instruction Multiple Data,SIMD)指令集的轻量化卷积神经网络计算加速方法,并将该方法用于处理脑电信号(Elect... 针对传统ARM处理器算力低、不适用于实时性需求比较高的应用场景的问题,本文提出了一种基于ARM处理器的单指令多数据(Single Instruction Multiple Data,SIMD)指令集的轻量化卷积神经网络计算加速方法,并将该方法用于处理脑电信号(Electroencephalogram,EEG)来进行手术过程中麻醉深度监测.通过可学习步长量化的方法得到轻量化卷积神经网络,减少浮点数的运算量,极大地提高了网络速度.采用基于ARM处理器SIMD指令集的卷积加速器,各卷积层分别可加速几十倍、几百倍,甚至一万多倍.在Ultra 96-V2开发板上用ARM处理器实现整个网络的运算,在昆士兰大学生命体征公开数据集上的测试结果表明,仅需39.64ms就可以处理时间跨度为1s的EEG单通道信号,速度提高到原来的10.5倍,且功耗仅为0.1J,在提升速度的同时基本保持网络预测的准确率,能够很好地预测出麻醉深度. 展开更多
关键词 网络轻量化 学习步长量化 单指令多数据 数据流架构 脑电信号
下载PDF
基于图神经网络和改进自注意网络的会话推荐 被引量:3
18
作者 盛强 成卫青 《南京邮电大学学报(自然科学版)》 北大核心 2022年第5期91-100,共10页
基于会话推荐旨在根据用户当前会话和历史会话预测用户的下一次点击。现有的会话推荐系统大多数基于当前会话建立局部偏好来预测用户行为,而低估了会话全局序列蕴含的信息。同时多数推荐系统忽略了会话交互序列的相对位置关系。针对这... 基于会话推荐旨在根据用户当前会话和历史会话预测用户的下一次点击。现有的会话推荐系统大多数基于当前会话建立局部偏好来预测用户行为,而低估了会话全局序列蕴含的信息。同时多数推荐系统忽略了会话交互序列的相对位置关系。针对这些问题,提出了一种基于图神经网络与改进自注意力网络融合的会话推荐模型(GNN-SAP)。GNN-SAP通过GNN与注意力机制来提取当前会话节点的局部偏好,通过改进自注意网络来捕获会话节点的全局偏好;同时在会话节点中加入可学习的位置嵌入,来更好地把握用户兴趣变化的过程。最终,通过线性融合全局偏好和局部偏好的方式来预测行为。通过大量的实验验证了GNN-SAP模型在常用的稀疏、密集数据集和不同评价指标上都优于现有的会话推荐方法,并且通过对GNN-SAP不同组件的消融实验验证了通过将基于GNN短期偏好和基于改进自注意力的全局偏好融合的有效性。 展开更多
关键词 基于会话推荐 图神经网络 自注意力机制 学习的位置嵌入
下载PDF
基于深度展开的大规模MIMO系统CSI反馈算法 被引量:2
19
作者 廖勇 程港 李玉杰 《通信学报》 EI CSCD 北大核心 2022年第12期77-88,共12页
针对现阶段大规模MIMO系统中基于深度学习的信道状态信息(CSI)反馈算法待训练参数过多、可解释性不强的问题,提出了2种基于深度展开的CSI反馈算法。一种是基于可学习参数的近似消息传递(AMP)算法,该算法利用深度学习中的可学习参数将AM... 针对现阶段大规模MIMO系统中基于深度学习的信道状态信息(CSI)反馈算法待训练参数过多、可解释性不强的问题,提出了2种基于深度展开的CSI反馈算法。一种是基于可学习参数的近似消息传递(AMP)算法,该算法利用深度学习中的可学习参数将AMP算法中阈值函数的阈值和Onsager校正项的参数替换,增强了阈值函数在应对非严格稀疏数据时的非线性能力。另一种是基于卷积网络的AMP算法,该算法将阈值函数模块替换为卷积残差学习模块,利用该模块去除AMP算法中每轮迭代产生的高斯随机噪声。仿真分析表明,所提算法具有比AMP算法更好的CSI反馈表现,其中基于卷积网络的AMP算法具有比基于深度学习的代表性方法更优异的CSI重构性能。 展开更多
关键词 CSI反馈 深度学习 深度展开 近似消息传递 学习参数 卷积网络
下载PDF
基于改进池化层的弱标记声音事件检测 被引量:4
20
作者 刘淼 王晶 +1 位作者 董桂官 易伟明 《信号处理》 CSCD 北大核心 2021年第10期1907-1913,共7页
针对DCASE2017挑战赛任务4提供的大规模弱标记声音事件检测数据集,我们搭建了基于梅尔滤波器特征(Fbank)、卷积神经网络(CNN)以及循环神经网络(RNN)的多类别声音事件检测系统,分析了attention和linear softmax两种已有的常用池化层在神... 针对DCASE2017挑战赛任务4提供的大规模弱标记声音事件检测数据集,我们搭建了基于梅尔滤波器特征(Fbank)、卷积神经网络(CNN)以及循环神经网络(RNN)的多类别声音事件检测系统,分析了attention和linear softmax两种已有的常用池化层在神经网络反向传播中的部分推演过程,并在linear softmax池化层的基础上进行改进,提出了一种"指数可学习的幂函数softmax"池化层。实验结果表明,相比于DCASE竞赛中获得第一名的模型,应用"指数可学习的幂函数softmax"池化层的检测系统,将段级别的声音事件预测的F1值从0.556提高到0.652,帧级别预测的F1值从0.518提高到0.583,帧级别预测的error rate(ER)从0.730降低到0.667。 展开更多
关键词 弱标记 声音事件检测 池化层 指数学习的幂函数softmax
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部