期刊文献+

基于约束聚类的一种概念学习方法 被引量:3

Learning concepts by constrained clustering of positive instances
下载PDF
导出
摘要 首先定义了字符属性例子空间中合取规则的可学习性,通过将正例集合划分为多个子集,其中每个子集在全体反例集合上均是合取规则可学习的,并建立了命题规则的一般学习模型.然后,提出了三种正例集合的自动聚类和划分方法:相似性度量、差异度量和规则长度等,并设计了一种快速的合取规则学习方法.同时,基于最小覆盖率和最小错误率给出了一种克服过学习问题的后处理方法.最后,针对一组典型的学习问题进行了实验计算,并与已有算法进行了对比分析. In this paper, we define the conjunctive rules's learnability on nominal-attribute instances space, and set up a propositional concept learning model by clustering positive instances into multiple divisions. All divisions are conjunctive rules learnable against the total negative instances set. Three measures are introduced to guide the clustering process, and a procedure to generate CNF(conjunctive normal form) rules for clusters are formed. A post pruning procedure is designed to deal with the overfitting problem, and two criteria that are the minimum covering rate and the minimum error rate are defined. Experiments are implemented on several data sets, and the performance of the proposed method is analyzed and compared with existing algorithms.
作者 李敏强 李智
出处 《系统工程学报》 CSCD 2004年第5期482-488,共7页 Journal of Systems Engineering
基金 高等学校博士学科点专项科研基金资助项目(20020056047).
关键词 约束聚类 概念学习 合取规则可学习性 过学习 后处理 机器学习 propositional concept learning constrained clustering conjunctive rules learnability overfitting post pruning
  • 相关文献

参考文献10

  • 1Furnkranz J. Separate-and-Conquer rule learning[ J]. Artificial Intelligence Review, 1999, 13(1): 3-54. 被引量:2
  • 2Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106. 被引量:2
  • 3Quinlan J R, Cameron-Jones R M. Induction of logic programs: FOIL and related systems[ J]. New Generation Computing, 1995,13(3,4): 287-312. 被引量:2
  • 4Clark P, Niblett T. The CN2 induction algorithm[J]. Machine Learning, 1989, 3(4): 261-283. 被引量:2
  • 5Haussler D. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework[ J]. Artificial Intelligence, 1988,36(2): 177-221. 被引量:2
  • 6Theron H, Cloete I. BEXA: A covering algorithm for learning propositional concept descriptions[J]. Machine Learning, 1996, 24(1): 5-40. 被引量:2
  • 7Blake C L, Merz C J. UCI Repository of machine learning databases [ http://www. ics. uci. edu/mleam/MLRepository. html ].Irvine, CA: University of California, Department of Information and Computer Science, 2002. 被引量:2
  • 8Stefanowski J, Vanderpooten D. Induction of decision rules in classification and discovery-oriented perspectives [ J]. International Journal of Intelligent Systems, 2001, 16(1): 13-27. 被引量:2
  • 9Kohavi R, John G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1 - 2): 273-324. 被引量:2
  • 10Giordana A, Neri F. Search-intensive concept induction[J]. Evolutionary Computation, 1995, 3(4): 375-419. 被引量:1

共引文献1

同被引文献19

  • 1Wagstaff K, Cardie C, Rogers S, et al. Constrained K- means clustering with background knowledge[C]//Pro- ceedings of ICML. San Francisco, CA, USA: ACM, 2001 : 167-173. 被引量:1
  • 2Zhu Shunzhi, Wang Dingding, Li Tao. Data clustering with size constrains[J]. Knowledge--Based Systems, 2010 : 883-889. 被引量:1
  • 3Basu S, Baneriee A, Mooney R J. Active semi-- super- vision for pair--wise constrained clustering [C]// Pro- ceedings of SIAM Data Mining. Florida, USA:ACM, 2004: 111-119. 被引量:1
  • 4Banerjee A, Ghosh J. Scalable clustering algorithms with balancing constraints [J]. Data Mining Knowledge Discovery, 2006 : 31 - 34. 被引量:1
  • 5Zhong S, Ghosh J. A Unied framework for model- based clustering [J]. Journal of Machine Learning Re- search, 2003 : 12- 15. 被引量:1
  • 6Massatfa H. An algorithm to maximize the agreement between partitions [J]. Journal of Classification, 1992: 22-24. 被引量:1
  • 7Hubert L, Arabie P. Comparing partitions[J]. Journal of Classification, 1985. 被引量:1
  • 8Studholme C, Hill D, Hawkes D J. An overlap invari- ant entropy measure of 3D medical image alignment [J]. Pattern Recognition, 1999. 被引量:1
  • 9VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 10MitchellTM.Machine learning[M].北京:机械工业出版社,2003.. 被引量:2

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部