期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于RPN与B- CNN的细粒度图像分类算法研究 被引量:16
1
作者 赵浩如 张永 刘国柱 《计算机应用与软件》 北大核心 2019年第3期210-213,264,共5页
随着大数据和硬件的快速发展,细粒度分类任务应运而生,其目的是对粗粒度的大类别进行子类分类。为利用类间细微差异,提出基于RPN(Region Proposal Network)与B-CNN(Bilinear CNN)的细粒度图像分类算法。利用OHEM(Online Hard Example Mi... 随着大数据和硬件的快速发展,细粒度分类任务应运而生,其目的是对粗粒度的大类别进行子类分类。为利用类间细微差异,提出基于RPN(Region Proposal Network)与B-CNN(Bilinear CNN)的细粒度图像分类算法。利用OHEM(Online Hard Example Mine)筛选出对识别结果影响大的图像,防止过拟合;将筛选后的图像输入到由soft-nms(Soft Non Maximum Suppression)改进的RPN网络中,得到对象级标注的图像,同时减少假阴性概率;将带有对象级标注信息的图像输入到改进后的B-CNN中,改进后的B-CNN可以融合不同层特征并加强空间联系。实验结果表明,在CUB200-2011和Standford Dogs数据集平均识别精度分别达到85.50%和90.10%。 展开更多
关键词 细粒度分类 类间差异 双向卷积网络 非极大值抑制 特征融合
下载PDF
基于双向时间深度卷积网络的中文文本情感分类 被引量:14
2
作者 韩建胜 陈杰 +2 位作者 陈鹏 刘杰 彭德中 《计算机应用与软件》 北大核心 2019年第12期225-231,共7页
普通时间卷积网络对文本进行单向特征提取不能充分捕捉文本特征,对文本的分析能力较弱。提出一种基于双向时间卷积网络(Bi TCN)的情感分析模型。模型使用单向多层空洞因果卷积结构分别对文本进行前向和后向特征提取,将两个方向的序列特... 普通时间卷积网络对文本进行单向特征提取不能充分捕捉文本特征,对文本的分析能力较弱。提出一种基于双向时间卷积网络(Bi TCN)的情感分析模型。模型使用单向多层空洞因果卷积结构分别对文本进行前向和后向特征提取,将两个方向的序列特征融合后进行情感分类。研究并分析模型中卷积层数、卷积核大小和空洞因子三个参数对情感分类结果的影响。实验证明,与单向时间卷积网络情感分析模型相比,双向时间卷积网络模型在四个中文情感分析数据集上的准确率分别提高了2.5%、0.25%、2.33%和2.5%。 展开更多
关键词 情感分析 自然语言处理 空洞卷积 因果卷积 双向时间卷积网络
下载PDF
基于并行双向时间卷积网络和双向长短期记忆网络的轴承剩余使用寿命预测方法 被引量:1
3
作者 梁浩鹏 曹洁 赵小强 《控制与决策》 EI CSCD 北大核心 2024年第4期1288-1296,共9页
在基于深度学习的轴承剩余使用寿命(RUL)预测方法中,时间卷积网络(TCN)忽略了振动数据中未来时间信息的重要性,长短期记忆网络(LSTM)难以有效地学习振动数据的长时间序列特征.针对以上问题,提出一种基于并行双向时间卷积网络(Bi-TCN)和... 在基于深度学习的轴承剩余使用寿命(RUL)预测方法中,时间卷积网络(TCN)忽略了振动数据中未来时间信息的重要性,长短期记忆网络(LSTM)难以有效地学习振动数据的长时间序列特征.针对以上问题,提出一种基于并行双向时间卷积网络(Bi-TCN)和双向长短期记忆网络(Bi-LSTM)的轴承RUL预测方法.首先,对多传感器数据进行归一化处理,并将每个传感器数据进行通道合并,实现多传感器数据的高效融合;然后,采用Bi-TCN和Bi-LSTM构建并行的双分支特征学习网络,其中Bi-TCN提取数据的双向长时间序列特征,Bi-LSTM提取数据的时间相关特征;同时,设计一种特征融合注意力机制,该机制分别计算Bi-TCN和Bi-LSTM的输出权重,以实现两种网络输出特征的自适应加权融合;最后,融合特征通过全连接层并输出轴承RUL的预测结果.利用西安交通大学轴承数据集和PHM 2012轴承数据集进行RUL预测实验,实验结果表明,与其他先进的预测方法相比,所提出方法可以准确预测更多类型轴承的RUL,同时具有更低的预测误差. 展开更多
关键词 滚动轴承 剩余使用寿命预测 多传感器融合 双向时间卷积网络 双向长短期记忆网络
原文传递
融合深度BiGRU与全局图卷积的方面级情感分析模型 被引量:2
4
作者 杨春霞 徐奔 +1 位作者 陈启岗 桂强 《小型微型计算机系统》 CSCD 北大核心 2023年第1期132-139,共8页
现有基于深度学习的方面级情感分析模型需要考虑如何提取深层次的语义信息,其次通过依存树提取句法结构时可能存在信息丢失与数据稀疏问题.针对以上问题,本文提出了基于深度双向门控循环单元与全局双向图卷积网络的神经网络模型(DBG-GBG... 现有基于深度学习的方面级情感分析模型需要考虑如何提取深层次的语义信息,其次通过依存树提取句法结构时可能存在信息丢失与数据稀疏问题.针对以上问题,本文提出了基于深度双向门控循环单元与全局双向图卷积网络的神经网络模型(DBG-GBGCN).该模型通过深度双向门控循环单元捕获深层次的语义特征,得到上下文的隐层表示.然后将依存树的邻接矩阵转变为带有全局句法信息的全局矩阵,将此矩阵与上下文的隐层表示一起输入至双向图卷积网络进行特征融合,最后经过掩码层和注意力层得到一个包含深层语义特征与句法结构信息结合的分类特征.实验结果证明,该模型在5个公开数据集上的准确率与F1值均比对比模型有着一定的提升. 展开更多
关键词 方面级情感分析 全局矩阵 深度双向门控循环单元 双向卷积网络 特征融合
下载PDF
基于双向时间卷积网络的半监督日志异常检测
5
作者 尹春勇 孔娴 《计算机应用研究》 CSCD 北大核心 2024年第7期2110-2117,共8页
由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然... 由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然后,使用BERT对模板中的语义信息进行编码,获得日志的语义向量;接着采用聚类的方法进行标签估计,缓解了数据标注不足的问题,有效提高了模型对不稳定数据的检测;最后,使用带有残差块的双向时间卷积网络(Bi-TCN)从两个方向捕获上下文信息,提高了异常检测的精度和效率。为了评估该方法的性能,在两个数据集上进行了评估,最终实验结果表明,该方法与最新的三个基准模型LogBERT、PLELog和LogEncoder相比,F 1值平均提高了7%、14.1%和8.04%,能够高效精准地进行日志解析和日志异常检测。 展开更多
关键词 日志解析 异常检测 半监督学习 双向时间卷积网络 上下文相关性
下载PDF
基于BiTCN-SA的恶意代码分类方法 被引量:1
6
作者 黄玮 王坚 +1 位作者 吴暄 李思聪 《空军工程大学学报》 CSCD 北大核心 2023年第4期77-84,共8页
当前恶意代码的对抗技术不断变化,恶意代码变种层出不穷,使恶意代码分类问题面临严峻挑战。针对目前基于深度学习的恶意代码分类方法提取特征不足和准确率低的问题,提出了基于双向时域卷积网络(BiTCN)和自注意力机制(Self-Attention)的... 当前恶意代码的对抗技术不断变化,恶意代码变种层出不穷,使恶意代码分类问题面临严峻挑战。针对目前基于深度学习的恶意代码分类方法提取特征不足和准确率低的问题,提出了基于双向时域卷积网络(BiTCN)和自注意力机制(Self-Attention)的恶意代码分类方法(BiTCN-SA)。该方法融合恶意代码操作码特征和图像特征以展现不同的特征细节,增加特征多样性。构建BiTCN对融合特征进行处理,充分利用特征的前后依赖关系。引入自注意力机制对数据权值进行动态调整,进一步挖掘恶意代码内部数据间的关联性。在Kaggle数据集上对模型进行验证,实验结果表明:该方法准确率可达99.75%,具有较快的收敛速度和较低的误差。 展开更多
关键词 恶意代码分类 特征融合 双向时域卷积网络 自注意力机制
下载PDF
基于BiTCN-DLP的恶意代码分类方法
7
作者 李思聪 王坚 +1 位作者 宋亚飞 黄玮 《信息网络安全》 CSCD 北大核心 2023年第11期104-117,共14页
为应对不断升级的恶意代码变种,针对现有恶意代码分类方法对特征提取能力不足、分类准确率下降的问题,文章提出了基于双向时域卷积网络(Bidirectional Temporal Convolution Network,BiTCN)和池化融合(Double Layer Pooling,DLP)的恶意... 为应对不断升级的恶意代码变种,针对现有恶意代码分类方法对特征提取能力不足、分类准确率下降的问题,文章提出了基于双向时域卷积网络(Bidirectional Temporal Convolution Network,BiTCN)和池化融合(Double Layer Pooling,DLP)的恶意代码分类方法(BiTCN-DLP)。首先,该方法融合恶意代码操作码和字节码特征以展现不同细节;然后,构建BiTCN模型充分利用特征的前后依赖关系,引入池化融合机制进一步挖掘恶意代码数据内部深层的依赖关系;最后,文章在Kaggle数据集上对模型进行验证,实验结果表明,基于BiTCN-DLP的恶意代码分类准确率可达99.54%,且具有较快的收敛速度和较低的分类误差,同时,文章通过对比实验和消融实验证明了该模型的有效性。 展开更多
关键词 恶意代码分类 特征融合 双向时域卷积网络 池化融合
下载PDF
基于位置增强和双向图卷积的方面级情感分析
8
作者 郭钰铉 韩萌 李晖 《微处理机》 2023年第4期38-41,共4页
方面级情感分析旨在判别给定句子中具体方面的情感极性。针对大多数模型对位置信息关注度不够,以及单向图卷积神经网络不能充分应用单词间的依存关系较好地识别方面词的情感倾向等问题,提出基于位置增强和双向图卷积的方面级情感分析模... 方面级情感分析旨在判别给定句子中具体方面的情感极性。针对大多数模型对位置信息关注度不够,以及单向图卷积神经网络不能充分应用单词间的依存关系较好地识别方面词的情感倾向等问题,提出基于位置增强和双向图卷积的方面级情感分析模型。模型将位置信息和上下文词向量进行融合,并通过双向长短时记忆网络捕获语义信息;利用双向图卷积神经网络为提取方面特征提供句法约束,并通过掩码层得到特定的方面特征;通过注意力机制学习上下文与特定方面之间的重要信息。与ASGCN模型相比,该模型在Rest14、Lap14和Twitter三个公开数据集上的准确率和F1值都有提升。 展开更多
关键词 方面级情感分析 位置信息 双向卷积网络 注意力机制
下载PDF
基于双向长效注意力特征表达的少样本文本分类模型研究 被引量:2
9
作者 徐彤彤 孙华志 +2 位作者 马春梅 姜丽芬 刘逸琛 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第10期113-123,共11页
【目的】针对当前文本分类任务中存在的训练数据匮乏以及模型泛化性能低等问题,在少样本环境下研究文本分类问题,提出一种少样本文本分类模型。【方法】基于元学习中的分段训练机制将文本分类任务划分为多个子任务;为了捕捉每个子任务... 【目的】针对当前文本分类任务中存在的训练数据匮乏以及模型泛化性能低等问题,在少样本环境下研究文本分类问题,提出一种少样本文本分类模型。【方法】基于元学习中的分段训练机制将文本分类任务划分为多个子任务;为了捕捉每个子任务中文本的长效上下文信息,提出双向时间卷积网络;为了捕获辨别力更强的特征,联合双向时间卷积网络和注意力机制提出双向长效注意力网络;利用一种新的神经网络模型度量每个子任务中查询样本与支持集的相关性,从而实现少样本文本分类。【结果】在ARSC数据集上进行实验,实验结果表明,在少样本环境下,该模型的分类准确率高达86.80%,比现有先进的少样本文本分类模型ROBUSTTC-FSL和Induction-Network-Routing的准确率分别提高了3.68%和1.17%。【局限】仅针对短文本分类问题,对于篇幅较长的文本,其分类能力有限。【结论】双向长效注意力网络克服了训练数据匮乏问题且充分捕获文本的语义信息,有效提高了少样本文本分类性能。 展开更多
关键词 少样本文本分类 注意力机制 少样本学习 双向时间卷积网络
原文传递
基于社交媒体文本信息的金融时序预测
10
作者 李大舟 于沛 +1 位作者 高巍 马辉 《计算机工程与设计》 北大核心 2021年第8期2224-2231,共8页
针对传统股票趋势预测模型中忽略社交媒体文本信息对股价变化的影响和时间序列的平稳性处理、长期依赖等问题,提出一种融合社交媒体文本信息和LSTM的股票趋势预测模型(BiTCN-LSTM)。该模型分为情感分析和金融时序预测两部分。情感分析... 针对传统股票趋势预测模型中忽略社交媒体文本信息对股价变化的影响和时间序列的平稳性处理、长期依赖等问题,提出一种融合社交媒体文本信息和LSTM的股票趋势预测模型(BiTCN-LSTM)。该模型分为情感分析和金融时序预测两部分。情感分析层将社交媒体文本信息输入到双向时间卷积网络进行特征提取和情感分析,得到积极或者消极的情感分类表示;金融时序预测层使用LSTM神经网络,将差分运算后的股票历史数据和文本情感特征向量加权融合作为网络输入,完成金融时序预测任务。通过上海证券综合指数数据集的实验验证,与传统金融时序预测模型相比,该模型的RMSE指标降低3.44-43.62。 展开更多
关键词 情感分析 双向时间卷积网络 差分运算 长短时记忆 金融时间序列预测
下载PDF
基于BiLRCN和注意力机制的脉搏波血压测量
11
作者 陈晓 王志雄 杨瑶 《测控技术》 2024年第7期23-30,70,共9页
为了提高无创血压测量的精度,提出了基于双向长期递归卷积网络(Bidirectional Long-term Recurrent Convolutional Network,BiLRCN)和注意力机制的脉搏波血压测量方法。通过2个卷积神经网络(Convolutional Neural Network,CNN)层提取出... 为了提高无创血压测量的精度,提出了基于双向长期递归卷积网络(Bidirectional Long-term Recurrent Convolutional Network,BiLRCN)和注意力机制的脉搏波血压测量方法。通过2个卷积神经网络(Convolutional Neural Network,CNN)层提取出光电容积脉搏信号的高维度特征,将其作为双向长短期记忆(Bidirectional Long Short-Term Memory,BiLSTM)网络的输入,通过BiLSTM提取输入序列前后向的特征信息进行预测;根据注意力机制自动分配权重的特征,给予重要时刻脉搏特征数据较大的权重,并通过2个全连接层得到血压的测量值。将所提出的方法与CNN、长短期记忆(Long Short-Term Memory,LSTM)网络、BiLSTM网络、长期递归卷积神经网络(Long-term Recurrent Convolutional Network,LRCN)方法进行了收敛速度和血压测量的对比实验。实验结果表明,所提出的方法较LRCN均方误差降低了21.63%,平均绝对误差降低了67.5%,确定性相关系数提高了0.42%。所提出的方法的收敛速度更快、血压测量精度更高。 展开更多
关键词 深度学习 脉搏波 血压测量 双向长期递归卷积网络 注意力机制
下载PDF
基于BiGCN和IAM的方面级情感分类模型 被引量:4
12
作者 杨春霞 瞿涛 吴佳君 《计算机工程与应用》 CSCD 北大核心 2022年第11期178-186,共9页
目前基于神经网络的方面级情感分类模型很少会考虑上下文单词与方面词之间的句法依存关系,可能会错误地将与方面词语法无关的上下文单词作为方面词的情感特征;另一方面大多数方法也忽略了上下文与方面词之间的交互信息。针对这两个问题... 目前基于神经网络的方面级情感分类模型很少会考虑上下文单词与方面词之间的句法依存关系,可能会错误地将与方面词语法无关的上下文单词作为方面词的情感特征;另一方面大多数方法也忽略了上下文与方面词之间的交互信息。针对这两个问题,提出了基于双向图卷积网络(BiGCN)和交互注意力机制(IAM)的方面级情感分类模型(BiGCN-IAM),该模型在句法依存树上使用双向图卷积网络提取上下文单词和方面词之间的句法依存关系,然后使用掩码层得到特定的方面词表示;最后使用交互注意力机制学习上下文与方面词之间的交互信息,同时提取了上下文中的重要情感特征和方面词中对分类有贡献的特征。通过在五个公开数据集上的实验证明,该模型效果优于基线模型。 展开更多
关键词 方面级情感分类 交互注意力机制 双向卷积神经网络 句法依存树
下载PDF
融合多特征和双向图分类的专家推荐方法
13
作者 丁婧娴 李翔 +1 位作者 孙纪舟 周泓 《数据采集与处理》 CSCD 北大核心 2023年第5期1214-1225,共12页
专家推荐是推荐系统领域的一个研究热点,专家信息特征提取的合理性直接影响到推荐的准确性。然而多数专家推荐方法未对多源信息构建特征关系文本图,忽略了属性特征之间的相关性,以及无法依据关联性拓展知识领域特征。针对以上问题本文... 专家推荐是推荐系统领域的一个研究热点,专家信息特征提取的合理性直接影响到推荐的准确性。然而多数专家推荐方法未对多源信息构建特征关系文本图,忽略了属性特征之间的相关性,以及无法依据关联性拓展知识领域特征。针对以上问题本文提出了一种融合多特征和双向图分类的专家推荐方法CMFBG。首先通过多源信息融合获取专家个体多特征信息,并对不同属性特征构建类内文本图;然后分别使用基于Transformer的双向编码器表示(Bidirectionalencoder representation from transformer,BERT)模型和图卷积神经网络(Graph convolutional network,GCN)模型对特征提取并融合;最后通过双向注意力机制增强源数据对图特征的扩展,实现图结构上的分类。在同一专家数据集上进行实验分析,结果表明在图分类任务中CMFBG精确率高于其他算法,达到了91.71%。 展开更多
关键词 专家推荐方法 双向卷积神经网络 多特征融合 图结构分类
下载PDF
基于双向循环卷积神经网络的网络异常流量监测 被引量:1
14
作者 郑永奇 《信息记录材料》 2022年第11期198-200,共3页
由于对网络流量特征的提取结果存在偏差,导致对应的监测结果可靠性较低,为此,提出一种基于双向循环卷积神经网络的网络异常流量监测方法。在构建双向循环卷积神经网络阶段,通过感知器单元激活流量数据后,利用交叉熵代价函数对流量数据... 由于对网络流量特征的提取结果存在偏差,导致对应的监测结果可靠性较低,为此,提出一种基于双向循环卷积神经网络的网络异常流量监测方法。在构建双向循环卷积神经网络阶段,通过感知器单元激活流量数据后,利用交叉熵代价函数对流量数据在神经网络各神经元之间的传递进行约束,并将卷积神经网络中的卷积层替换为循环卷积层,通过在卷积层的输出结果中添加空数据,实现对网络流量特征的循环迭代计算,将最终提取到的特征参量作出异常流量判断标准输出到池化层。当待监测的网络流量数据输入到循环卷积神经网络后,通过拟合其特征参量与池化层特征之间的关系,判断其是否存在异常,并根据时间标签计算网络异常流量的规模。测试结果表明,设计方法可以实现对异常流量的准确监测。 展开更多
关键词 双向循环卷积神经网络 网络异常流量 感知器单元 交叉熵代价函数 循环卷积 网络流量特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部