彩色点云(color point cloud,CPC)作为三维场景和对象的有效描述形式,在虚拟现实、增强现实等许多领域得到重要应用。CPC在其采集、压缩、传输、重建等过程中会引入相应的失真,需要设计有效的评价方法对失真CPC质量进行评测。本文提出...彩色点云(color point cloud,CPC)作为三维场景和对象的有效描述形式,在虚拟现实、增强现实等许多领域得到重要应用。CPC在其采集、压缩、传输、重建等过程中会引入相应的失真,需要设计有效的评价方法对失真CPC质量进行评测。本文提出一种基于引导调制的CPC无参考质量评价方法。考虑到几何信息与彩色纹理信息的联合失真,利用引导调制的方法联立两者,以综合考虑几何失真、彩色纹理失真、联合失真。结合人眼的多通道性,利用剪切波变换提取特征。最后,将所有特征构成的特征向量输入到支持向量回归模型(support vector regression,SVR)学习预测点云质量。实验结果表明,所提出的方法与人类主观感知具有很好的一致性。展开更多
文摘彩色点云(color point cloud,CPC)作为三维场景和对象的有效描述形式,在虚拟现实、增强现实等许多领域得到重要应用。CPC在其采集、压缩、传输、重建等过程中会引入相应的失真,需要设计有效的评价方法对失真CPC质量进行评测。本文提出一种基于引导调制的CPC无参考质量评价方法。考虑到几何信息与彩色纹理信息的联合失真,利用引导调制的方法联立两者,以综合考虑几何失真、彩色纹理失真、联合失真。结合人眼的多通道性,利用剪切波变换提取特征。最后,将所有特征构成的特征向量输入到支持向量回归模型(support vector regression,SVR)学习预测点云质量。实验结果表明,所提出的方法与人类主观感知具有很好的一致性。