缅甸作为全球受地震灾害影响甚为严重的国家之一,因缺乏区域地震观测资料,对其孕震构造环境的详细分析研究十分不足.本文利用中缅联合地球物理探测(CMGSMO)项目在缅甸布设的密集宽频带地震台阵观测数据,对印缅山脉至中央盆地的地震活动...缅甸作为全球受地震灾害影响甚为严重的国家之一,因缺乏区域地震观测资料,对其孕震构造环境的详细分析研究十分不足.本文利用中缅联合地球物理探测(CMGSMO)项目在缅甸布设的密集宽频带地震台阵观测数据,对印缅山脉至中央盆地的地震活动特征进行了分析.基于改进的剪切-粘贴法(generalized Cut And Paste,gCAP)新获得了28个ML3.0~5.0地震事件的震源机制解等震源参数信息,并结合全球矩心矩张量(Global Centroid Moment Tensor,GCMT)目录及其他已发表的震源机制解资料,应用区域阻尼应力场反演算法得到了研究区的应力分布状态,综合探讨了研究区域深浅部构造关系及孕震机制.研究表明印度板块持续的斜向俯冲控制着印缅山脉和中央盆地的地震活动,但其影响向东逐渐减弱,浅部最大主应力方向的变化可能反映的是局部应力集中或者是相对短时间内的应力调整,不同区域的地震活动差异主要受区域构造及其浅部断层的影响,中央盆地下方的两个邻区之间的最大主应力轴的偏转可能与深部活动相关.展开更多
Under global change and climate variations,determining the impacts of climate change and human activities on cropland net primary productivity(NPP)in Bangladesh,India and Myanmar(BIM)is of great significance for ident...Under global change and climate variations,determining the impacts of climate change and human activities on cropland net primary productivity(NPP)in Bangladesh,India and Myanmar(BIM)is of great significance for identifying yield-limiting factors,making adaptive agricultural management plans,and improving yields.Based on the GLOPEM-CEVSA model,through an integration of remote sensing data and LAI simulation,we investigated the impacts and spatiotemporal changes of water and human activities on BIM from 1982 to 2015.Three types of cropland NPPs were considered:actual NPP(NPPA),NPP affected by temperature and water(NPPWT),and NPP only affected by temperature(NPPT).Our analysis revealed that the water factor plays a predominant role in determining the NPP level in the BIM.Temperature variability was found to be conducive to NPPT,exhibiting an increasing trend of 10.66 g C m^(-2) yr^(-1).However,this trend was partially offset by precipitation variability,resulting in a net increase of 0.96 g C m^(-2) yr^(-1).In comparing temperature-driven NPP to temperature and water-driven NPP,water stress caused NPPT to decrease by 65.46% compared to NPPWT for the entire region.Cropland NPP in northwestern India and the central Deccan Plateau were significantly affected by water stress.Moreover,the influence of water on NPP in the BIM exhibited a substantial upward trend from 1982 to 2015,with Myanmar experiencing the most significant increase.The gap between NPPWT and NPPA in BIM demonstrated a notable decreasing trend during the same period,underscoring the positive impact of human activities on NPP.Inferences drawn from our findings suggest that with the implementation of rational and efficient crop management practices,there is a 36.80% potential improvement in NPPA compared to NPPWT in the BIM region,with India and Myanmar showing potential increases of 39.20% and 38.29%,respectively.These insights provide guidance for practical measures aimed at water resource management to enhance cropland productivity in the BIM,and they 展开更多
文摘缅甸作为全球受地震灾害影响甚为严重的国家之一,因缺乏区域地震观测资料,对其孕震构造环境的详细分析研究十分不足.本文利用中缅联合地球物理探测(CMGSMO)项目在缅甸布设的密集宽频带地震台阵观测数据,对印缅山脉至中央盆地的地震活动特征进行了分析.基于改进的剪切-粘贴法(generalized Cut And Paste,gCAP)新获得了28个ML3.0~5.0地震事件的震源机制解等震源参数信息,并结合全球矩心矩张量(Global Centroid Moment Tensor,GCMT)目录及其他已发表的震源机制解资料,应用区域阻尼应力场反演算法得到了研究区的应力分布状态,综合探讨了研究区域深浅部构造关系及孕震机制.研究表明印度板块持续的斜向俯冲控制着印缅山脉和中央盆地的地震活动,但其影响向东逐渐减弱,浅部最大主应力方向的变化可能反映的是局部应力集中或者是相对短时间内的应力调整,不同区域的地震活动差异主要受区域构造及其浅部断层的影响,中央盆地下方的两个邻区之间的最大主应力轴的偏转可能与深部活动相关.
基金The National Natural Science Foundation of China(31861143015)The Natural Science Foundation of Shandong Province,China(ZR2023QC254).
文摘Under global change and climate variations,determining the impacts of climate change and human activities on cropland net primary productivity(NPP)in Bangladesh,India and Myanmar(BIM)is of great significance for identifying yield-limiting factors,making adaptive agricultural management plans,and improving yields.Based on the GLOPEM-CEVSA model,through an integration of remote sensing data and LAI simulation,we investigated the impacts and spatiotemporal changes of water and human activities on BIM from 1982 to 2015.Three types of cropland NPPs were considered:actual NPP(NPPA),NPP affected by temperature and water(NPPWT),and NPP only affected by temperature(NPPT).Our analysis revealed that the water factor plays a predominant role in determining the NPP level in the BIM.Temperature variability was found to be conducive to NPPT,exhibiting an increasing trend of 10.66 g C m^(-2) yr^(-1).However,this trend was partially offset by precipitation variability,resulting in a net increase of 0.96 g C m^(-2) yr^(-1).In comparing temperature-driven NPP to temperature and water-driven NPP,water stress caused NPPT to decrease by 65.46% compared to NPPWT for the entire region.Cropland NPP in northwestern India and the central Deccan Plateau were significantly affected by water stress.Moreover,the influence of water on NPP in the BIM exhibited a substantial upward trend from 1982 to 2015,with Myanmar experiencing the most significant increase.The gap between NPPWT and NPPA in BIM demonstrated a notable decreasing trend during the same period,underscoring the positive impact of human activities on NPP.Inferences drawn from our findings suggest that with the implementation of rational and efficient crop management practices,there is a 36.80% potential improvement in NPPA compared to NPPWT in the BIM region,with India and Myanmar showing potential increases of 39.20% and 38.29%,respectively.These insights provide guidance for practical measures aimed at water resource management to enhance cropland productivity in the BIM,and they