期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进随机抽样一致的点云分割算法 被引量:12
1
作者 赵夫群 马玉 戴翀 《科学技术与工程》 北大核心 2021年第22期9455-9460,共6页
随着三维点云数据模型在三维建模、测绘、智能城市以及机器视觉等领域的应用,点云数据处理也成为一个研究热点。点云分割就是将三维空间中点云通过一系列算法,将散乱的点云数据划分成更为连贯的子集的过程,可以为后续的数据分析提供数... 随着三维点云数据模型在三维建模、测绘、智能城市以及机器视觉等领域的应用,点云数据处理也成为一个研究热点。点云分割就是将三维空间中点云通过一系列算法,将散乱的点云数据划分成更为连贯的子集的过程,可以为后续的数据分析提供数据基础。针对随机抽样一致算法(random sample consensus,RANSAC)对杂乱、无规则点云数据分割效果不佳的问题,提出一种改进的RANSAC点云分割算法。该算法通过构建Kd(K-dimensional)树,利用半径空间密度重新定义初始点的选取方式,进行多次迭代来剔除无特征点,在实现点云分割的同时可以有效去除噪声点;此外,该算法重新设定判断准则,优化面片合并,可以实现点云的精确分割。实验通过对散乱点云数据进行分割,结果表明该改进RANSAC算法的点云特征提取数据量较大,面片分割的准确性较高,是一种有效的点云分割算法。 展开更多
关键词 点云分割 随机抽样一致 K-dimensional(Kd)树 半径空间密度 面片合并
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部