期刊文献+

基于改进随机抽样一致的点云分割算法 被引量:12

Point Cloud Segmentation Algorithm Based on Improved Random Sample Consensus
下载PDF
导出
摘要 随着三维点云数据模型在三维建模、测绘、智能城市以及机器视觉等领域的应用,点云数据处理也成为一个研究热点。点云分割就是将三维空间中点云通过一系列算法,将散乱的点云数据划分成更为连贯的子集的过程,可以为后续的数据分析提供数据基础。针对随机抽样一致算法(random sample consensus,RANSAC)对杂乱、无规则点云数据分割效果不佳的问题,提出一种改进的RANSAC点云分割算法。该算法通过构建Kd(K-dimensional)树,利用半径空间密度重新定义初始点的选取方式,进行多次迭代来剔除无特征点,在实现点云分割的同时可以有效去除噪声点;此外,该算法重新设定判断准则,优化面片合并,可以实现点云的精确分割。实验通过对散乱点云数据进行分割,结果表明该改进RANSAC算法的点云特征提取数据量较大,面片分割的准确性较高,是一种有效的点云分割算法。 With the application of 3D point cloud data model in 3D modeling,mapping,intelligent city and machine vision,point cloud data processing has become a research hotspot.Point cloud segmentation is the process of dividing the scattered point cloud data into more coherent subsets through a series of algorithms,which can provide the corresponding data base for the subsequent data analysis.To solve the problem that random sample consensus(RANSAC)algorithm was not effective in the segmentation of noisy and irregular point cloud data,an improved RANSAC point cloud segmentation algorithm was proposed.In this algorithm,K-dimensional(Kd)tree was constructed,the selection method of initial point was redefined by using the spatial density of radius,the non-feature points were eliminated by multiple iterations,and the noise points were removed at the same time of point cloud segmentation;otherwise,the algorithm reset the judgment criteria,optimized the combination of patches,and realized the accurate segmentation of point cloud.The experimental results show that the improved RANSAC point cloud segmentation algorithm is a more effective point cloud segmentation algorithm,which has a larger amount of point cloud feature extraction data and a higher accuracy than Euclidean cluster segmentation algorithm.
作者 赵夫群 马玉 戴翀 ZHAO Fu-qun;MA Yu;DAI Chong(School of Information, Xi'an University of Finance and Economics, Xi'an, 710100, China;School of Information Science and Technology, Northwest University, Xi'an, 710127, China)
出处 《科学技术与工程》 北大核心 2021年第22期9455-9460,共6页 Science Technology and Engineering
基金 国家自然科学基金(61731015) 陕西省自然科学基础研究计划项目(2021JQ-765) 陕西省哲学社会科学重大理论与现实问题研究项目(2021ND0141) 西安财经大学科学研究扶持计划项目(20FCJH002)。
关键词 点云分割 随机抽样一致 K-dimensional(Kd)树 半径空间密度 面片合并 point cloud segmentation random sample consensus K-dimensional(Kd)tree radius space density patch combination
  • 相关文献

参考文献8

二级参考文献50

  • 1姜如波.基于三维激光扫描技术的建筑物模型重建[J].测绘通报,2013(S1):80-83. 被引量:24
  • 2董明晓,郑康平,姚斌.曲面重构中点云数据的区域分割研究[J].中国图象图形学报(A辑),2005,10(5):575-578. 被引量:17
  • 3刘观仕,孔令伟,丁锋,顾建武.高速公路扩建工程软基拓宽的沉降监测与分析[J].岩土力学,2007,28(2):331-335. 被引量:37
  • 4MOOSMANN F,PINK O,STILLER C.Segmenta-tion of 3Dlidar data in non-flat urban environmentsusing a local convexity criterion[C] ∥Proceedings ofIEEE Intelligent Vehicles Symposium.Piscataway,NJ,USA:IEEE,2009:215-220. 被引量:1
  • 5TSENG Yi-Hsing,WANG Miao.Automatic plane ex-traction from LIDAR data based on octree splitting andmerging segmentation[C] ∥Proceedings of IEEE In-ternational Geoscience and Remote Sensing Symposi-um.Piscataway,NJ,USA:IEEE,2005:3281-3284. 被引量:1
  • 6WANG Miao,TSENG Yi-Hsing.Automatic segmen-tation of Lidar data into coplanar point clusters usingan octree-based split-and-merge algorithm[J].Photo-gramme Thrice Engineering and Remote Sensing,2010,76(4):407-420. 被引量:1
  • 7DOUILARD B,UNDERWOOD J,KUNTZ N,et al.On the segmentation of 3DLIDAR point clouds[C] ∥Proceedings of IEEE International Conference on Ro-botics and Automation.Piscataway,NJ,USA:IEEE,2011:2798-2805. 被引量:1
  • 8DAVID S,JIRI Z.Graph cut based point-cloud seg-mentation for polygonal reconstruction[C] ∥Proceed-ings of the5th International Symposium on Advances in Visual Computing.Heidelberg,Germang:Springer Verlag,2009:218-227. 被引量:1
  • 9MARIO R,MARKUS V.Point cloud segmentation based on radial reflection[C] ∥Proceedings of13th International Conference on Computer Analysis of Ima-ges and Patterns.Heidelberg,Germany:Springer Verlag,2009:955-962. 被引量:1
  • 10JAGANNATHAN A,MILLIER E L.Three-dimen-sional surface mesh segmentation using curvedness-based region growing approach[J].IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2007,29(12):2195-2204. 被引量:1

共引文献78

同被引文献115

引证文献12

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部