Let R<sup>n</sup> denote the real n-dimensional space. The Clifford algebra over the field of real numbershas a unit element eo and basic elements e<sub>1</sub>,…,e<sub>m</sub>, ...Let R<sup>n</sup> denote the real n-dimensional space. The Clifford algebra over the field of real numbershas a unit element eo and basic elements e<sub>1</sub>,…,e<sub>m</sub>, it is an associative algebra and its basic elements satisfythe relations;e<sub>i</sub>e<sub>j</sub>+ e<sub>j</sub>e<sub>i</sub>=- 2eoδ<sub>ij</sub>,i≠0, j≠0.Thus . is a vector-space with orthonormal basese<sub>0</sub>,e<sub>1</sub>…,e<sub>m</sub>,e<sub>1</sub>e<sub>2</sub>,…,e<sub>m</sub>-1e<sub>m</sub>,…,e<sub>1</sub>…e<sub>m</sub>,every basis-element of may be written in the展开更多
基金Project supported by National Natural Science Foundation of China.
文摘Let R<sup>n</sup> denote the real n-dimensional space. The Clifford algebra over the field of real numbershas a unit element eo and basic elements e<sub>1</sub>,…,e<sub>m</sub>, it is an associative algebra and its basic elements satisfythe relations;e<sub>i</sub>e<sub>j</sub>+ e<sub>j</sub>e<sub>i</sub>=- 2eoδ<sub>ij</sub>,i≠0, j≠0.Thus . is a vector-space with orthonormal basese<sub>0</sub>,e<sub>1</sub>…,e<sub>m</sub>,e<sub>1</sub>e<sub>2</sub>,…,e<sub>m</sub>-1e<sub>m</sub>,…,e<sub>1</sub>…e<sub>m</sub>,every basis-element of may be written in the