基于局部二值模式(LBP)算子在模式识别中直方图维数高、判别能力差、具有冗余信息等缺点,针对作物病害叶片图像的特点,提出一种自适应中心对称局部二值模式(Adaptive Center-Symmetric Local Binary Patterns,ACSLBP)算法,并应用于作物...基于局部二值模式(LBP)算子在模式识别中直方图维数高、判别能力差、具有冗余信息等缺点,针对作物病害叶片图像的特点,提出一种自适应中心对称局部二值模式(Adaptive Center-Symmetric Local Binary Patterns,ACSLBP)算法,并应用于作物病害识别。该算法能够得到光照和旋转不变性的纹理特征,利用模糊C均值聚类算法对病害叶片图像进行分割,再将分割后的病斑图像进行分块,然后采用自适应阈值提取每个子块的ACSLBP纹理直方图,结合作物病害叶片图像的颜色特征,利用最近邻分类器识别作物病害。在黄瓜4种常见病害叶片图像数据库上进行试验,平均识别率高达95%以上,表明该方法是有效可行的。展开更多
应用深度学习的图像分析技术,可较早地、无损地检测作物病害,但移动端计算资源的有限性限制了深度学习在移动端的应用和发展。利用迁移学习方法,进行多种神经网络的预训练,将其在ImageNet图像数据集上学到的知识迁移运用到多种农作物数...应用深度学习的图像分析技术,可较早地、无损地检测作物病害,但移动端计算资源的有限性限制了深度学习在移动端的应用和发展。利用迁移学习方法,进行多种神经网络的预训练,将其在ImageNet图像数据集上学到的知识迁移运用到多种农作物数据集及番茄单作物数据集的多种病害识别上,并进行多个深度学习模型在多种作物数据集的计算复杂度、识别效果及计算速度的对比。通过对比发现:Xception模型的计算准确率比较高,计算复杂度稍复杂些;当应用场景对计算准确率的要求不是很高的情况下,ShuffleNet V20.5x模型在计算复杂程度、计算速度的综合表现相对较好,比较适合在移动端进行移植;接着,通过对ShuffleNet V20.5x采用ReLU和LeakyReLU激活函数进行训练和验证分析,发现当采用LeakyReLU激活函数替代原有的ReLU激活函数构建Shuffle Net V20.5x模型,可以改进Shuffle Net V20.5x模型,并能稍微提高识别的准确率,由85.6%提高到86.5%。最后将改进后的ShuffleNet V20.5x模型,移植到移动终端并进行测试。展开更多
准确地识别农作物病害种类、病害程度,是能够正确防治病害的基础,对农作物的高质量生产有重要意义。针对传统深度学习模型对图像的细粒度分类不够精准的问题,提出不参与残差计算的通道注意力(efficient channel attention without parti...准确地识别农作物病害种类、病害程度,是能够正确防治病害的基础,对农作物的高质量生产有重要意义。针对传统深度学习模型对图像的细粒度分类不够精准的问题,提出不参与残差计算的通道注意力(efficient channel attention without participating in residual calculation,EWPRC)结构,该结构将改进的通道注意力机制ECANet3放在残差块之后,增加模型对通道维度的权重学习能力,并将EWPRC结构用于骨干网络为ResNet50的迁移学习模型中,通过替换模型中的layer3、layer4层得到了EWPRC-RseNet-t模型。试验使用了AIChallenger 2018数据集,在数据预处理、数据增强、超参数相同的情况下,首先对比了固定核大小为3、5、7、11、13的通道注意力机制对模型准确率的影响,在此试验中,模型的准确率随卷积核变大呈下降趋势,其中一维卷积核大小为3的模型准确率最高,达到了87.42%,比核大小为5、7、11、13的模型分别提高了0.03、0.42、0.51、0.64百分点。再将EWPRC-ResNet-t模型与经过微调的迁移学习模型ResNet-t以及GoogLeNet、MobileNet-v3、ResNet50模型进行对比,以准确率、精确率、召回率以及F1值作为评价指标,试验结果证明EWPRC-ResNet-t模型取得了最好的效果,比传统深度学习模型中准确率最高的ResNet50模型提高了0.99百分点,比ResNet-t模型提高了0.75百分点。且相比传统的深度学习模型,EWPRC-ResNet-t模型有更高的精度、召回率与F1得分。展开更多
文摘基于局部二值模式(LBP)算子在模式识别中直方图维数高、判别能力差、具有冗余信息等缺点,针对作物病害叶片图像的特点,提出一种自适应中心对称局部二值模式(Adaptive Center-Symmetric Local Binary Patterns,ACSLBP)算法,并应用于作物病害识别。该算法能够得到光照和旋转不变性的纹理特征,利用模糊C均值聚类算法对病害叶片图像进行分割,再将分割后的病斑图像进行分块,然后采用自适应阈值提取每个子块的ACSLBP纹理直方图,结合作物病害叶片图像的颜色特征,利用最近邻分类器识别作物病害。在黄瓜4种常见病害叶片图像数据库上进行试验,平均识别率高达95%以上,表明该方法是有效可行的。
文摘应用深度学习的图像分析技术,可较早地、无损地检测作物病害,但移动端计算资源的有限性限制了深度学习在移动端的应用和发展。利用迁移学习方法,进行多种神经网络的预训练,将其在ImageNet图像数据集上学到的知识迁移运用到多种农作物数据集及番茄单作物数据集的多种病害识别上,并进行多个深度学习模型在多种作物数据集的计算复杂度、识别效果及计算速度的对比。通过对比发现:Xception模型的计算准确率比较高,计算复杂度稍复杂些;当应用场景对计算准确率的要求不是很高的情况下,ShuffleNet V20.5x模型在计算复杂程度、计算速度的综合表现相对较好,比较适合在移动端进行移植;接着,通过对ShuffleNet V20.5x采用ReLU和LeakyReLU激活函数进行训练和验证分析,发现当采用LeakyReLU激活函数替代原有的ReLU激活函数构建Shuffle Net V20.5x模型,可以改进Shuffle Net V20.5x模型,并能稍微提高识别的准确率,由85.6%提高到86.5%。最后将改进后的ShuffleNet V20.5x模型,移植到移动终端并进行测试。
文摘准确地识别农作物病害种类、病害程度,是能够正确防治病害的基础,对农作物的高质量生产有重要意义。针对传统深度学习模型对图像的细粒度分类不够精准的问题,提出不参与残差计算的通道注意力(efficient channel attention without participating in residual calculation,EWPRC)结构,该结构将改进的通道注意力机制ECANet3放在残差块之后,增加模型对通道维度的权重学习能力,并将EWPRC结构用于骨干网络为ResNet50的迁移学习模型中,通过替换模型中的layer3、layer4层得到了EWPRC-RseNet-t模型。试验使用了AIChallenger 2018数据集,在数据预处理、数据增强、超参数相同的情况下,首先对比了固定核大小为3、5、7、11、13的通道注意力机制对模型准确率的影响,在此试验中,模型的准确率随卷积核变大呈下降趋势,其中一维卷积核大小为3的模型准确率最高,达到了87.42%,比核大小为5、7、11、13的模型分别提高了0.03、0.42、0.51、0.64百分点。再将EWPRC-ResNet-t模型与经过微调的迁移学习模型ResNet-t以及GoogLeNet、MobileNet-v3、ResNet50模型进行对比,以准确率、精确率、召回率以及F1值作为评价指标,试验结果证明EWPRC-ResNet-t模型取得了最好的效果,比传统深度学习模型中准确率最高的ResNet50模型提高了0.99百分点,比ResNet-t模型提高了0.75百分点。且相比传统的深度学习模型,EWPRC-ResNet-t模型有更高的精度、召回率与F1得分。