期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于核方法的二维线性判决分析的人脸识别算法 被引量:4
1
作者 张朝柱 左国辉 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第4期1167-1170,共4页
针对基于二维线性判决分析的人脸识别算法中缺少非线性判决信息的问题,提出了一种改进的基于核方法的二维线性判决分析的人脸识别算法。实验结果表明,改进后的算法相对原算法具有更好的识别效果。在此基础上研究了在使用多项式核函数时... 针对基于二维线性判决分析的人脸识别算法中缺少非线性判决信息的问题,提出了一种改进的基于核方法的二维线性判决分析的人脸识别算法。实验结果表明,改进后的算法相对原算法具有更好的识别效果。在此基础上研究了在使用多项式核函数时本文算法的性能,得出了在选用低次数多项式核函数时识别率较高的结论。 展开更多
关键词 通信技术 人脸识别 二维线性判别 核方法 多项式核函数
下载PDF
融合双向主成分分析的二维线性判别方法 被引量:10
2
作者 许爽 索继东 丁纪峰 《大连海事大学学报》 CAS CSCD 北大核心 2011年第3期73-76,共4页
通过分析已有掌纹识别中特征提取的方法,提出一种融合双向主成分分析的二维线性判别方法.首先,对掌纹感兴趣区域的图像矩阵进行行和列双方向的二维主成分分析,消除图像中行和列的相关性,降低特征维数;然后,在其子空间内实现二维线性判别... 通过分析已有掌纹识别中特征提取的方法,提出一种融合双向主成分分析的二维线性判别方法.首先,对掌纹感兴趣区域的图像矩阵进行行和列双方向的二维主成分分析,消除图像中行和列的相关性,降低特征维数;然后,在其子空间内实现二维线性判别,得到最佳投影矩阵;最后,提取判别特征完成特征识别.实验结果表明,该方法提取速度快、识别率高、鲁棒性好. 展开更多
关键词 二维线性判别(2DFLD) 二维主成分分析(2DPCA) 掌纹识别 特征提取
原文传递
基于Wi-Fi和人脸识别技术的智能锁系统设计 被引量:10
3
作者 周扬 熊俊俏 《电子技术应用》 2021年第6期57-61,共5页
针对传统门锁存在的安全问题,设计了一款将Wi-Fi技术与人脸识别技术相结合的智能锁系统。该系统采用STM32F103作为核心控制器件,CC1101作为通信传输模块,有效降低功耗的同时实现了信息的交互。同时提出MULBP人脸识别算法,相较于改进前... 针对传统门锁存在的安全问题,设计了一款将Wi-Fi技术与人脸识别技术相结合的智能锁系统。该系统采用STM32F103作为核心控制器件,CC1101作为通信传输模块,有效降低功耗的同时实现了信息的交互。同时提出MULBP人脸识别算法,相较于改进前增强了图像灰度均值与每行、每列以及对角线元素的关系,得到的全新LBP算子值更能够反映出局部纹理特征,再与2DLDA算法相结合找到投影矩阵,使样本更容易被区分,更便于特征提取。结果表明,这种融合算法在降低特征维数的同时也提高了识别率,使得系统达到了智能防盗的目的。 展开更多
关键词 智能锁 无线通信技术 局部二值模式 二维线性判别分析
下载PDF
基于三维荧光光谱结合二维线性判别分析的油类识别方法的研究 被引量:9
4
作者 孔德明 董瑞 +2 位作者 崔耀耀 王书涛 史慧超 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第8期2505-2510,共6页
油类污染严重威胁到自然环境及人类健康。因此,识别和处理油类污染非常重要。由于三维荧光光谱能够表征石油的荧光特征,故一般利用三维荧光光谱法检测溶液中存在的油类污染物。但油类的三维荧光光谱数据维度较高且直接分析的难度较大,... 油类污染严重威胁到自然环境及人类健康。因此,识别和处理油类污染非常重要。由于三维荧光光谱能够表征石油的荧光特征,故一般利用三维荧光光谱法检测溶液中存在的油类污染物。但油类的三维荧光光谱数据维度较高且直接分析的难度较大,因此可以利用数据降维方法提取原始油类样本的光谱特征,并利用所得到的光谱特征对样本进行识别。基于此,利用二维线性判别分析(2D-LDA)对油类样本进行特征提取,研究提取的不同样本光谱特征的差别,将得到的光谱特征作为K最近邻(KNN)分类的输入,得到相应的分类结果。首先,分别配制四种不同的油类(柴油、汽油、航空煤油、润滑油)样本各20个,共计得到80个油类样本;然后,利用FS920光谱仪采集所有油类样本的三维荧光光谱数据;其次,对采集到的光谱数据进行预处理,去除光谱中散射的干扰并标准化;最后,利用2D-LDA算法对样本进行特征提取,利用KNN算法进行分类,并将其分类结果与经主成分分析(PCA)进行特征提取后的分类结果比较。研究结果表明,2D-LDA提取特征的分类效果优于PCA。利用2D-LDA分别提取发射和激发特征得到测试集识别的准确率相同且都为95%,而将发射和激发光谱特征的分类距离相结合并重新进行分类的准确率为100%。表明两类光谱相对于三维荧光光谱具有互补性,将发射和激发光谱特征相结合能够更好地对样本进行分类。而利用PCA对测试集识别的准确率仅为85%,表明2D-LDA对三维荧光光谱数据的特征提取效果更好。与PCA相比,2D-LDA通过类内散度和类间散度最大化投影向量来提取样本的特征,使得同类样本尽可能接近,不同样本尽可能分离。因此,2D-LDA具有使降维后的数据更容易被区分的特点,故其鲁棒性好。该研究为油类的降维识别提供了一种参考。 展开更多
关键词 三维荧光光谱 二维线性判别分析 主成分分析 K最近邻
下载PDF
2DPCA+2DLDA和改进的LPP相结合的人脸识别算法 被引量:8
5
作者 李球球 杨恢先 +2 位作者 奉俊鹏 蔡勇勇 翟云龙 《计算机工程与应用》 CSCD 北大核心 2015年第21期199-204,共6页
针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行... 针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行优化,使LPP成为有监督的非线性学习方法,采用改进的LPP(ILPP)算法对训练集图像进行二次投影,提取样本的局部流形信息,并作为人脸识别信息进行鉴别。在Yale和ORL人脸库的测试结果验证了该方法的有效性。 展开更多
关键词 人脸识别 二维主成分分析+二维线性判别分析(2DPCA+2DLDA) 局部保持投影(LPP) 改进的局部保持投 影(1LPP) 局部流形信息
下载PDF
一种基于双向模块2DLDA的人脸识别方法 被引量:6
6
作者 王磊 武敬飞 贾莉 《电子测量与仪器学报》 CSCD 2013年第8期760-765,共6页
针对人脸识别中的特征抽取问题,对原始的二维线性判别分析(2DLDA)算法进行改进,提出了一种基于双向模块2DLDA的人脸识别算法。首先对原始图像进行模块化处理,然后分别从行和列2个方向上实施2DLDA变换,最后通过可调幂因子最近邻分类器进... 针对人脸识别中的特征抽取问题,对原始的二维线性判别分析(2DLDA)算法进行改进,提出了一种基于双向模块2DLDA的人脸识别算法。首先对原始图像进行模块化处理,然后分别从行和列2个方向上实施2DLDA变换,最后通过可调幂因子最近邻分类器进行特征分类,完成人脸识别。该方法不仅有效的利用人脸的局部特征信息、降低光照对人脸的影响,而且显著降低了人脸图像特征的维数。在ORL人脸库以及Yale人脸库中的实验结果表明,提出的人脸识别方法具有较好的人脸识别性能。 展开更多
关键词 二维线性判别分析 矩阵模块化 双向投影 特征抽取 人脸识别
下载PDF
融合2DDCT、2DPCA和2DLDA的人脸识别方法 被引量:5
7
作者 廖正湘 陈元枝 李强 《计算机应用与软件》 CSCD 北大核心 2012年第9期237-239,288,共4页
二维主分量分析(2DPCA)是人脸识别中的一种非常有效的特征提取方法。二维线性判别(2DLDA)方法具有很好的分类效果。在研究这两种理论的基础上提出一种基于2DDCT(二维离散余弦变换)与2DPCA+2DLDA相结合的人脸识别方法,并在0RL人脸库上分... 二维主分量分析(2DPCA)是人脸识别中的一种非常有效的特征提取方法。二维线性判别(2DLDA)方法具有很好的分类效果。在研究这两种理论的基础上提出一种基于2DDCT(二维离散余弦变换)与2DPCA+2DLDA相结合的人脸识别方法,并在0RL人脸库上分别对单一的方法与相融合的方法进行识别比较研究。实验结果表明,提出的方法不仅提高了识别率,而且减少了训练与分类时间。 展开更多
关键词 二维主分量分析 二维线性判别分析 特征提取 离散余弦变换
下载PDF
基于子模式双向二维线性判别分析的人脸识别 被引量:4
8
作者 董晓庆 陈洪财 《液晶与显示》 CAS CSCD 北大核心 2015年第6期1016-1023,共8页
针对表情和光照变化等对人脸识别影响的问题,提出一种基于子模式双向二维线性判别分析(Sub-pattern two-directional two-dimensional linear discriminant analysis,Sp-(2D)2 LDA)的人脸识别方法。该方法首先对原图像进行分块处理,并... 针对表情和光照变化等对人脸识别影响的问题,提出一种基于子模式双向二维线性判别分析(Sub-pattern two-directional two-dimensional linear discriminant analysis,Sp-(2D)2 LDA)的人脸识别方法。该方法首先对原图像进行分块处理,并保持子块间的空间关系,然后对各个子训练样本集从行方向和列方向同时利用2DLDA进行特征抽取,最后把各个子特征矩阵拼接成一对应原始图像的特征矩阵,并采用最近邻分类器进行分类识别。在ORL及Yale人脸库上的试验结果表明,Sp-(2D)2 LDA有效降低了鉴别特征的维数,减少了表情和光照变化的影响,获得了较好的识别性能。 展开更多
关键词 人脸识别 特征抽取 双向二维线性判别分析 子模式双向二维线性判别分析
下载PDF
二维PCA非参数子空间分析的人脸识别算法 被引量:4
9
作者 王美 梁久祯 《计算机工程》 CAS CSCD 北大核心 2011年第24期187-189,192,共4页
提出一种结合二维PCA(2DPCA)的二维非参数子空间分析(2DNSA)人脸识别算法。利用2DPCA对原始图像矩阵进行特征降维,以降维后的特征为训练样本,进行二维非参数判别分析,并综合考虑类边界样本对分类的影响,采用2DNSA实现更合理的特征提取... 提出一种结合二维PCA(2DPCA)的二维非参数子空间分析(2DNSA)人脸识别算法。利用2DPCA对原始图像矩阵进行特征降维,以降维后的特征为训练样本,进行二维非参数判别分析,并综合考虑类边界样本对分类的影响,采用2DNSA实现更合理的特征提取。基于Yale、LARGE人脸数据库的实验结果表明,与(2D)2PCA、2DPCA、(2D)2LDA、2DLDA、2DPCA+2DLDA、2DNSA算法相比,该算法性能更优。 展开更多
关键词 人脸识别 特征提取 二维非参数子空间分析 二维主成分分析 二维线性判别分析
下载PDF
基于小波子空间集成的人脸识别 被引量:4
10
作者 翟俊海 翟梦尧 +1 位作者 张素芳 王熙照 《山东大学学报(工学版)》 CAS 北大核心 2012年第2期1-6,29,共7页
基于小波变换的人脸识别方法通常选用低频子图进行人脸识别,这样会丢失其他子段图像中的识别信息。针对这一问题,提出了两种小波子空间集成人脸识别方法并与其他相关方法进行了实验比较。第1种方法集成每1层小波低频子空间图像进行人脸... 基于小波变换的人脸识别方法通常选用低频子图进行人脸识别,这样会丢失其他子段图像中的识别信息。针对这一问题,提出了两种小波子空间集成人脸识别方法并与其他相关方法进行了实验比较。第1种方法集成每1层小波低频子空间图像进行人脸识别;第2种方法首先对人脸图像做L层小波分解,然后对每1层的3个高频子空间图像求平均,连同每层的1个低频子空间图像得到L个小波子空间图像,最后集成这L个小波子空间图像进行人脸识别。本文提出的方法充分利用了不同频率小波子段图像的识别信息,能够提高人脸识别的精度。在ORL、YALE和JAFFE 3个人脸数据库上的实验结果显示,本文提出的方法特别是方法 2在识别精度方面都优于其他方法。 展开更多
关键词 人脸识别 小波变换 子空间集成 二维主成分分析 二维线性判别分析
原文传递
一种基于广义2DLDA算法在人脸识别的应用 被引量:4
11
作者 宋家东 周明全 +2 位作者 卢金环 刘一丹 李晓娟 《小型微型计算机系统》 CSCD 北大核心 2015年第4期856-861,共6页
提出一种基于广义的2DLDA算法,简称:G2DLDA.首先,由于2DLDA算法提取的特征向量矩阵S-1wSb通常不是标准正交特征向量矩阵,因此该方法会严重影响特征提取的质量.本文根据Sw矩阵是对称正定的,即:具有Sw=S1/2w×S1/2w性质,将2DLDA算法... 提出一种基于广义的2DLDA算法,简称:G2DLDA.首先,由于2DLDA算法提取的特征向量矩阵S-1wSb通常不是标准正交特征向量矩阵,因此该方法会严重影响特征提取的质量.本文根据Sw矩阵是对称正定的,即:具有Sw=S1/2w×S1/2w性质,将2DLDA算法的特征向量矩阵转化成基于标准正交特征向量矩阵,即:S-1/2wSbS-1/2w.其次,G2DLDA算法与2DLDA一样不会产生小样本事件,因为方程式S-1/2wSbS-1/2wv=λv的右端为单位矩阵,是满秩的.最后,G2DLDA算法采用基于Cosine-范数度量方式进行分类,实验证明该度量方式优于其他度量方式,如:欧氏距离度量方式以及F-范数度量方式.在实验阶段,本文采用Yale、ORL和JAFFE三个数据库对该算法进行测试与分析,实验结果证明该算法具有较好的鲁棒性,同时能够获得较高的识别率. 展开更多
关键词 广义二维线性判别分析 二维 Cosine-范数 小样本事件 维度灾难
下载PDF
核方法的对比研究及在步态识别中的应用 被引量:3
12
作者 贲晛烨 王科俊 刘海洋 《智能系统学报》 2011年第1期63-67,共5页
为了提高步态识别问题的识别性能,将"核技巧"应用到步态识别上,对核二维线性判别分析提出新的解决方案,在自建的HEU(B)步态数据库上,应用核主成分分析、核线性判别分析、核二维主成分分析与核二维线性判别分析进行特征提取作... 为了提高步态识别问题的识别性能,将"核技巧"应用到步态识别上,对核二维线性判别分析提出新的解决方案,在自建的HEU(B)步态数据库上,应用核主成分分析、核线性判别分析、核二维主成分分析与核二维线性判别分析进行特征提取作对比实验研究.实验结果显示:"核技巧"用于矩阵特征比向量更有效;核二维主成分分析对于单训练样本较核主成分分析更为有效;核二维线性判别分析在测试识别时间上有优势. 展开更多
关键词 步态识别 核主成分分析 线性判别分析 二维主成分分析 二维线性判别分析
下载PDF
基于行列特征复融合的人脸识别 被引量:4
13
作者 胡晓 俞王新 +1 位作者 余群 姚菁 《计算机工程》 CAS CSCD 北大核心 2010年第11期176-177,182,共3页
针对基于行列投影特征融合的二维线性判别分析中存在的问题,提出一种行列特征复融合的人脸识别算法。通过二维线性判别分析获得行和列的特征矩阵融合成一个复特征矩阵,从复特征矩阵重提取最具分类能力的系数组成特征向量。利用AT&T... 针对基于行列投影特征融合的二维线性判别分析中存在的问题,提出一种行列特征复融合的人脸识别算法。通过二维线性判别分析获得行和列的特征矩阵融合成一个复特征矩阵,从复特征矩阵重提取最具分类能力的系数组成特征向量。利用AT&T和AR人脸数据库对该算法进行性能测试,结果表明该算法具有较高的识别率。 展开更多
关键词 人脸识别 二维线性判别分析 小样本容量问题 特征融合
下载PDF
改进的双边二维线性判别分析的手背静脉识别 被引量:4
14
作者 王贺 邓茂云 +3 位作者 姜守坤 李明明 宗宇轩 刘富 《吉林大学学报(信息科学版)》 CAS 2017年第1期32-36,共5页
针对双边二维线性判别分析(B2D-LDA:Bilateral Two-Dimensional Linear Discriminant Analysis)方法中多类类别均值和总体均值接近时难以分类的问题,提出了一种改进的B2D-LDA(MB2D-LDA:Modified B2D-LDA)方法,并将其运用到手背静脉特征... 针对双边二维线性判别分析(B2D-LDA:Bilateral Two-Dimensional Linear Discriminant Analysis)方法中多类类别均值和总体均值接近时难以分类的问题,提出了一种改进的B2D-LDA(MB2D-LDA:Modified B2D-LDA)方法,并将其运用到手背静脉特征提取中。重新定义了类间离散度矩阵,融入了每两类类间的距离,当类别均值与总体均值接近时,则用该类和其他各类类间距离组成离散度矩阵。采用基于欧氏距离的最近邻分类器进行匹配识别。结果表明,在不增加识别时间的情况下,MB2D-LDA平均识别率比B2D-LDA高2%,证明了该算法的有效性。 展开更多
关键词 手背静脉识别 特征提取 双边二维线性判别分析 最近邻分类器
下载PDF
基于三维荧光光谱结合2D-LDA的食用油掺假鉴别研究
15
作者 姜海洋 崔耀耀 +1 位作者 贾彦国 谌志鹏 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第11期3179-3185,共7页
食用油掺假行为严重威胁消费者的身体健康并扰乱社会市场秩序。研究有效的食用油掺假鉴别方法对于构建安全、可靠的食品供应链和提升消费者福祉具有重要意义。以食用油中的香油为例开展食用油掺假鉴别方法研究。通过芝麻香精与玉米油、... 食用油掺假行为严重威胁消费者的身体健康并扰乱社会市场秩序。研究有效的食用油掺假鉴别方法对于构建安全、可靠的食品供应链和提升消费者福祉具有重要意义。以食用油中的香油为例开展食用油掺假鉴别方法研究。通过芝麻香精与玉米油、大豆油以及菜籽油三种食用油配制了3类掺假香油;使用FLS920稳态荧光光谱仪采集了这3类掺假香油以及不同品牌香油共计45个实验样本的三维荧光光谱数据;基于2D-LDA方法提取了实验样本的二维特征,并以此为依据采用最近邻分类原理实现了掺假食用油的准确鉴别。将所述方法与平行因子结合非线性判别分析(PARAFAC-QDA)、多维偏最小二乘——判别分析(NPLS-DA)两种方法进行了对比。结果表明,2D-LDA方法能够有效提取掺假香油的二维特征。这些特征能够使不同类别的实验样本在投影子空间中实现最大程度分离;同时可使相同类别的实验样本在子空间中尽可能地紧密聚集,进而使得样本在低维子空间中具有更好的可分性,从而获得了100%的鉴别准确率。而PARAFAC-QDA和NPLS-DA两种方法仅分别获得了85%和95%的鉴别准确率。2D-LDA方法相比于这两种方法在食用油掺假鉴别特别是现场快速检测的实际应用中更具优势和潜力,其鉴别过程与结果更加简捷和精确。研究为现场食品安全监管提供了一种高效可行的新方案。 展开更多
关键词 食用油 三维荧光光谱 二维线性判别分析(2D-LDA) 掺假鉴别
下载PDF
基于QR分解与2DLDA的单样本人脸识别 被引量:3
16
作者 覃磊 李德华 周康 《微电子学与计算机》 CSCD 北大核心 2015年第2期65-68,共4页
提出了一种新的基于矩阵的QR分解与2DLDA的单样本人脸识别算法(QR decomposition+2DLDA).利用矩阵的QR分解,将单样本人脸图像进行QR分解后提取有效的部分信息构成虚拟图像,结合原训练图像生成新的训练样本集,应用2DLDA进行特征提取和识... 提出了一种新的基于矩阵的QR分解与2DLDA的单样本人脸识别算法(QR decomposition+2DLDA).利用矩阵的QR分解,将单样本人脸图像进行QR分解后提取有效的部分信息构成虚拟图像,结合原训练图像生成新的训练样本集,应用2DLDA进行特征提取和识别.在ORL人脸数据库上对算法进行了实验,实验结果表明此算法的识别效果不仅优于PCA、SPCA、(PC)2 A、E(PC)2 A算法,而且对于光照、表情等因素具有良好的鲁棒性. 展开更多
关键词 虚拟图像 单样本 二维线性判别分析 QR分解
下载PDF
基于分块2DPCA与2DLDA的单训练样本人脸识别 被引量:3
17
作者 覃磊 李德华 周康 《微电子学与计算机》 CSCD 北大核心 2015年第11期105-110,共6页
二维线性判别分析(2DLDA)在人脸识别已经获得巨大成功,然而用于单训练样本人脸识别问题方法失效,因为每类需要多个样本计算类内散度.对此提出了一种新的基于图像矩阵的分块二维主成分分析+二维线性判别分析(Block 2DPCA+2DLDA)的单训练... 二维线性判别分析(2DLDA)在人脸识别已经获得巨大成功,然而用于单训练样本人脸识别问题方法失效,因为每类需要多个样本计算类内散度.对此提出了一种新的基于图像矩阵的分块二维主成分分析+二维线性判别分析(Block 2DPCA+2DLDA)的单训练样本人脸识别算法.首先将图像进行分块,并按其位置将子图像分成多个样本集,在每个样本集上应用2DPCA算法,进行第一次识别.其次将第一次识别出的已知类别的测试样本并入原单训练样本集中,原单训练样本集成为多训练样本集.最后在新的训练样本集和测试集上应用2DLDA算法作为第二次识别,识别第一次未能识别出的图像.Block 2DPCA+2DLDA算法在ORL人脸数据库上被检测,实验结果表明Block 2DPCA+2DLDA识别结果优于PCA、2DPCA等算法. 展开更多
关键词 单训练样本 人脸识别 二维主成分分析(2DPCA) 二维线性判别分析(2DLDA)
下载PDF
一种基于重采样双向2DLDA融合的人脸识别算法 被引量:2
18
作者 李文辉 姜园媛 +1 位作者 王莹 傅博 《电子学报》 EI CAS CSCD 北大核心 2011年第11期2526-2533,共8页
针对人脸识别中普遍存在的光照、表情等变化带来的识别问题和小样本问题,本文提出了一种利用重采样技术融合双向2DLDA特征的人脸识别算法Resampling Bidirection 2DLDA(RB2DLDA).二维线性判别分析中,2DLDA利用垂直方向上的类内和类间协... 针对人脸识别中普遍存在的光照、表情等变化带来的识别问题和小样本问题,本文提出了一种利用重采样技术融合双向2DLDA特征的人脸识别算法Resampling Bidirection 2DLDA(RB2DLDA).二维线性判别分析中,2DLDA利用垂直方向上的类内和类间协方差信息进行识别,E2DLDA利用水平方向上的类内和类间协方差信息进行识别,本文中从理论上证明了这两个方向上的判别信息具有一定的互补性,为融合两个方向的判别信息进行分类器的设计,改善分类器的识别性能提供了理论基础.同时为RB2DLDA算法提出一种自适应的降维参数设定方法,经过在AR和CAS-PEAL-R1人脸库上的实验表明,RB2DLDA算法具有较高的识别率和鲁棒性. 展开更多
关键词 人脸识别 重采样 双向二维线性判别分析
下载PDF
基于模糊积分的不完全小波包子空间集成人脸识别 被引量:2
19
作者 翟俊海 王熙照 张素芳 《模式识别与人工智能》 EI CSCD 北大核心 2014年第9期794-801,共8页
提出一种基于模糊积分的不完全小波包子空间集成人脸识别方法,并与五种相关方法进行实验比较.首先对人脸图像做不完全小波包分解,对双向低频子空间图像直接进行特征提取,对含有一个方向低频成分的高频子空间图像先求平均,再进行提取特征... 提出一种基于模糊积分的不完全小波包子空间集成人脸识别方法,并与五种相关方法进行实验比较.首先对人脸图像做不完全小波包分解,对双向低频子空间图像直接进行特征提取,对含有一个方向低频成分的高频子空间图像先求平均,再进行提取特征;然后用得到的不同子空间图像训练模糊分类器;最后用模糊积分融合训练的模糊分类器.该方法能够充分利用不同频率小波子空间图像中包含的有用信息,从而提高人脸识别的精度.在ORL、YALE、JAFFE和FERET这4个人脸数据库上进行实验,实验结果表明该方法在识别精度方面均优于五种相关方法. 展开更多
关键词 人脸识别 小波包变换 子空间集成 二维主成分分析 二维线性判别分析
下载PDF
基于小波分解和K2DPCA-2DLDA的手背静脉识别 被引量:2
20
作者 吕岑 程诚 赵东霞 《计算机应用》 CSCD 北大核心 2011年第2期423-425,共3页
提出了一种基于小波分解和二维主成分分析-二维线性判别式分析(K2DPCA-2DLDA)的手背静脉识别方法,选用db4小波基对原图进行小波分解。对其低频子图进行K2DPCA映射获得低维空间特征,通过对此低维空间特征进行2DLDA变换得到最终特征表达,... 提出了一种基于小波分解和二维主成分分析-二维线性判别式分析(K2DPCA-2DLDA)的手背静脉识别方法,选用db4小波基对原图进行小波分解。对其低频子图进行K2DPCA映射获得低维空间特征,通过对此低维空间特征进行2DLDA变换得到最终特征表达,利用最近邻法则进行了分类。实验结果表明,该方法能提高手背静脉识别率,有效减少识别时间。 展开更多
关键词 生物识别技术 手背静脉 小波分解 二维主成分分析 二维线性判别式分析
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部