城市功能区是认知城市复杂系统的重要单元。然而,由于城市系统的复杂性,城市功能区分类目前仍存在一定的挑战。本文提出构建一种基于POI(Point of Interest,兴趣点)和主动学习算法的城市功能区分类方法。一方面,该方法采用的主动学习算...城市功能区是认知城市复杂系统的重要单元。然而,由于城市系统的复杂性,城市功能区分类目前仍存在一定的挑战。本文提出构建一种基于POI(Point of Interest,兴趣点)和主动学习算法的城市功能区分类方法。一方面,该方法采用的主动学习算法是一种半监督分类方法。相较于非监督分类方法,该方法可具有更高的分类精度;相较于监督分类方法,该方法仅需标记少量的功能区类型,而由于城市系统的复杂性,功能区类型的标记往往需要行业专家的专业知识及对城市深入地熟悉与了解。另一方面,相较于现有研究中常用的大数据(高空间分辨率遥感影像、POI、移动通信、公交刷卡等社会感知数据),该方法选择的POI数据具有易获取、数据完整性高且兼顾城市系统中地理实体的自然属性和社会经济属性的特点,使得本方法具有较高的可行性。本文以北京市朝阳区为例,采用该方法进行城市功能区分类,并将识别结果与人工识别结果进行对比分析,验证了本方法的可行性与准确性,然后分析了该方法实现过程中的两个重要参数对分类结果准确性的影响。展开更多
提出一种面向不平衡数据的主动学习算法Balance adjustment Active Learning(简称Ba-AL).每次迭代结束检查训练集样本平衡度,对不平衡训练集进行聚类并剔除冗余样本,保持训练集的平衡,从而提高分类效果.UCI数据集及真实的遥感影像数据...提出一种面向不平衡数据的主动学习算法Balance adjustment Active Learning(简称Ba-AL).每次迭代结束检查训练集样本平衡度,对不平衡训练集进行聚类并剔除冗余样本,保持训练集的平衡,从而提高分类效果.UCI数据集及真实的遥感影像数据集仿真结果表明,该方法可以获得较好的分类效果,达到目标正确率所需的最少训练样本数更少,算法效率更高,数据利用指标更优越.展开更多
文摘城市功能区是认知城市复杂系统的重要单元。然而,由于城市系统的复杂性,城市功能区分类目前仍存在一定的挑战。本文提出构建一种基于POI(Point of Interest,兴趣点)和主动学习算法的城市功能区分类方法。一方面,该方法采用的主动学习算法是一种半监督分类方法。相较于非监督分类方法,该方法可具有更高的分类精度;相较于监督分类方法,该方法仅需标记少量的功能区类型,而由于城市系统的复杂性,功能区类型的标记往往需要行业专家的专业知识及对城市深入地熟悉与了解。另一方面,相较于现有研究中常用的大数据(高空间分辨率遥感影像、POI、移动通信、公交刷卡等社会感知数据),该方法选择的POI数据具有易获取、数据完整性高且兼顾城市系统中地理实体的自然属性和社会经济属性的特点,使得本方法具有较高的可行性。本文以北京市朝阳区为例,采用该方法进行城市功能区分类,并将识别结果与人工识别结果进行对比分析,验证了本方法的可行性与准确性,然后分析了该方法实现过程中的两个重要参数对分类结果准确性的影响。
文摘提出一种面向不平衡数据的主动学习算法Balance adjustment Active Learning(简称Ba-AL).每次迭代结束检查训练集样本平衡度,对不平衡训练集进行聚类并剔除冗余样本,保持训练集的平衡,从而提高分类效果.UCI数据集及真实的遥感影像数据集仿真结果表明,该方法可以获得较好的分类效果,达到目标正确率所需的最少训练样本数更少,算法效率更高,数据利用指标更优越.