The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the fin...The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the final product and are discharged in the effluent. Therefore, the objective of this study was to assess the performance of EGSB (Expanded Granular Sludge Bed) reactor to treat non-acidifie wastewater. Several experiments using starch and volatile fatty acids as model substrates were conducted. The problems of piston formation were evaluated at a variety of relevant operational conditions, such as substrate concentration, organic and hydraulic loading rates. The results showed that newly grown acidogenic biomass diluted original methanogenic biomass and the granular sludge in the EGSB reactor deteriorated. The piston formation in the EGSB reactor that was fed with non-acidified wastewater occurred due to high growth of acidogenic biomass and high upflow velocity applied in the system.展开更多
文摘The textile processing plants utilize a wide variety of dyes and other chemicals such as acids, bases, salts, detergents, sizes, oxidants, mercerizing and finishing chemicals. Many of these are not retained in the final product and are discharged in the effluent. Therefore, the objective of this study was to assess the performance of EGSB (Expanded Granular Sludge Bed) reactor to treat non-acidifie wastewater. Several experiments using starch and volatile fatty acids as model substrates were conducted. The problems of piston formation were evaluated at a variety of relevant operational conditions, such as substrate concentration, organic and hydraulic loading rates. The results showed that newly grown acidogenic biomass diluted original methanogenic biomass and the granular sludge in the EGSB reactor deteriorated. The piston formation in the EGSB reactor that was fed with non-acidified wastewater occurred due to high growth of acidogenic biomass and high upflow velocity applied in the system.