R^n中双障碍问题是一类重要的变分不等式,可产生于数学物理问题的离散,也可直接来源于实际问题.其形式如下:求X~*∈K,使得(y-x~*)~T f(X~*)≥0,(?)_y∈K(1)其中f(x)=Ax-q,K=multiply from i=1 to n(K_i),而A∈R^(n×n),q∈R^n,K_i...R^n中双障碍问题是一类重要的变分不等式,可产生于数学物理问题的离散,也可直接来源于实际问题.其形式如下:求X~*∈K,使得(y-x~*)~T f(X~*)≥0,(?)_y∈K(1)其中f(x)=Ax-q,K=multiply from i=1 to n(K_i),而A∈R^(n×n),q∈R^n,K_i为一维闭区间,也即取下列四种形式之一:(-∞,b_i],[a_i,b_i],[a_i,+∞),(-∞,+∞).为简单起见,上述问题我们用VIP(K,f)表示,且约定对下无界区间记a_i=-∞,上无界区间记b_i=+∞.显然,当K_i(i=1,2,…,n)为非负实半轴时,上述变分问题变为如下线性互补问题LCP(f):求X~*∈R_+~n。展开更多
文摘R^n中双障碍问题是一类重要的变分不等式,可产生于数学物理问题的离散,也可直接来源于实际问题.其形式如下:求X~*∈K,使得(y-x~*)~T f(X~*)≥0,(?)_y∈K(1)其中f(x)=Ax-q,K=multiply from i=1 to n(K_i),而A∈R^(n×n),q∈R^n,K_i为一维闭区间,也即取下列四种形式之一:(-∞,b_i],[a_i,b_i],[a_i,+∞),(-∞,+∞).为简单起见,上述问题我们用VIP(K,f)表示,且约定对下无界区间记a_i=-∞,上无界区间记b_i=+∞.显然,当K_i(i=1,2,…,n)为非负实半轴时,上述变分问题变为如下线性互补问题LCP(f):求X~*∈R_+~n。