期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于氮氧同位素的深水湖泊硝酸盐来源辨析 被引量:2
1
作者 吴亚丽 亢晓琪 +2 位作者 牛远 兰伟 余辉 《中国农村水利水电》 北大核心 2022年第4期106-113,共8页
硝酸盐负荷对水体的影响已成为国内外广泛关注的问题。明确水体硝酸盐负荷的主要来源,是精准制定流域氮污染控源减排策略的基础。该研究以深水湖泊千峡湖为研究对象,通过对湖水水化学特征、硝酸盐氮氧同位素组成及各来源(降水、生活污... 硝酸盐负荷对水体的影响已成为国内外广泛关注的问题。明确水体硝酸盐负荷的主要来源,是精准制定流域氮污染控源减排策略的基础。该研究以深水湖泊千峡湖为研究对象,通过对湖水水化学特征、硝酸盐氮氧同位素组成及各来源(降水、生活污水、肥料、沉积物及周边土壤)氮氧同位素组成的监测研究,定性分析了千峡湖水体硝酸盐变化趋势及其主要来源。并在此基础上,采用稳定同位素模型MixSIAR定量分析各硝酸盐来源的贡献率。结果表明:(1)千峡湖水体上游硝酸盐主要来自人为活动下有机氮等汇入水体发生的硝化作用过程;(2)湖体硝酸盐来源中流域土壤、生活污水、肥料、沉积物、降水的硝酸盐贡献占比分别为87%±9.7%、9.0%±5.9%、2.5%±1.5%、1.2%±0.8%、0.3%±0.4%。千峡湖湖体氮的迁移转化过程以硝化作用为主,迁移转化过程中受人类活动影响较大,因此,产生的硝酸盐含有较高的氮稳定同位素值。该研究可为深水湖泊氮循环及迁移转化过程提供科学依据。 展开更多
关键词 硝酸盐来源 氮氧同位素 贝叶斯同位素混合模型 千峡湖
下载PDF
太子河下游河流硝酸盐来源及其迁移转化过程 被引量:21
2
作者 李艳利 杨梓睿 +1 位作者 尹希杰 孙伟 《环境科学》 EI CAS CSCD 北大核心 2018年第3期1076-1084,共9页
2016年5月(枯水期)和2016年8月(丰水期)分别在太子河下游采集河流表层水样14个.为了识别河流硝酸盐来源及迁移转化过程,分别采用离子交换法,叠氮法和CO_2-H_2O平衡法测定水样的ρ(Cl-)、ρ(NO_3^-)、δ^(15)N-NO_3^-、δ^(18)O-NO_3^-值... 2016年5月(枯水期)和2016年8月(丰水期)分别在太子河下游采集河流表层水样14个.为了识别河流硝酸盐来源及迁移转化过程,分别采用离子交换法,叠氮法和CO_2-H_2O平衡法测定水样的ρ(Cl-)、ρ(NO_3^-)、δ^(15)N-NO_3^-、δ^(18)O-NO_3^-值,测定δ^(18)O-H_2O.结果表明:不同采样期,硝酸盐主要来自于多种源的混合.枯水期,北沙河上游支流硝酸盐来源主要是土壤N及生活污水及畜禽粪便,中下游硝酸盐主要来自于化学肥料和生活污水及畜禽粪便.南沙河硝酸盐主要来自于生活污水及畜禽粪便.海城河上游、中游和下游硝酸盐分别来自于土壤N,生活污水及畜禽粪便和化学肥料,生活污水及畜禽粪便.丰水期,北沙河硝酸盐来源可能主要是土壤N、化学肥料和生活废水及畜禽粪便.南沙河和海城河中下游硝酸盐主要来自于化学肥料及生活废水及畜禽粪便,海城河上游河流硝酸盐主要来自于土壤N和化学肥料.从枯水期至丰水期,ρ(NO_3^-)、ρ(NH_4^+-N)均呈现降低的趋势,而δ^(15)N-NO_3^-值有增加的趋势,说明丰水期可能发生了氨的挥发和硝酸盐的反硝化过程.丰水期δ^(15)N-NO_3^-与1/ρ(NO_3^-)呈轻微的正相关关系,说明丰水期河流发生了简单的混合过程.本研究的结果可为平原区域的硝酸盐污染来源的季节差异研究提供参考. 展开更多
关键词 硝酸盐 δ^15n-no3^- δ^18o-no3^- 污染源 Cl^-
原文传递
岩溶槽谷区地下河硝酸盐来源及其环境效应:以重庆龙凤槽谷地下河系统为例 被引量:18
3
作者 段世辉 蒋勇军 +5 位作者 张远瞩 曾泽 王正雄 吴韦 彭学义 刘九缠 《环境科学》 EI CAS CSCD 北大核心 2019年第4期1715-1725,共11页
以重庆典型岩溶槽谷龙凤槽谷地下河系统为研究对象,于2017年5月~2018年4月收集大气干、湿沉降和两条地下河(凤凰河、龙车河)水样,利用水化学、δ^(15)N(NO_3^-)、δ^(18)O(NO_3^-)、δ^(18)O(H_2O)和δ^(13)C(DIC)同位素等数据来探讨... 以重庆典型岩溶槽谷龙凤槽谷地下河系统为研究对象,于2017年5月~2018年4月收集大气干、湿沉降和两条地下河(凤凰河、龙车河)水样,利用水化学、δ^(15)N(NO_3^-)、δ^(18)O(NO_3^-)、δ^(18)O(H_2O)和δ^(13)C(DIC)同位素等数据来探讨岩溶地下河水NO_3^-来源及其环境效应.结果表明:①两条地下河水化学类型均属于HCO_3-Ca型,NO_3^-浓度变化范围在17. 58~32. 58mg·L^(-1)之间,平均值为24. 02 mg·L^(-1),雨季略高于旱季,存在明显污染迹象;②两条地下河水δ^(15)N(NO_3^-)、δ^(18)O(NO_3^-)值变化于-3. 14‰~12. 67‰和-0. 77‰~12. 05‰之间,均值分别为7. 45‰和2. 90‰,表现为旱季偏正、雨季偏负的特点,且两条地下河水NO_3^-来源无明显差异,动物排泄物和生活污水是全年稳定来源,降雨、化肥和土壤氮是雨季地下河水NO_3^-的主要来源,硝化过程是地下河系统氮的主要转化过程;③两条地下河水(Ca^(2+)+Mg^(2+))/HCO_3-的量比介于0. 65~0. 82之间,凤凰河均值为0. 75,龙车河均值为0. 70,δ^(13)C(DIC)在-12. 46‰~-9. 20‰之间,凤凰河均值为-10. 72‰,龙车河均值为-11. 10‰,说明各个来源的HNO_3和NH_4^+硝化形成的HNO_3参与了碳酸盐岩的风化过程;④地下河水中8%的DIC来源于HNO_3溶蚀碳酸盐岩,凤凰河、龙车河分别为9%和7%. 展开更多
关键词 岩溶槽谷 地下水 no-3来源 δ15n(no-3)-δ18o(no-3)同位素 环境效应
原文传递
基于水化学和氮氧同位素的贵州草海丰水期水体硝酸盐来源辨析 被引量:18
4
作者 殷超 杨海全 +4 位作者 陈敬安 郭建阳 王敬富 张征 唐续尹 《湖泊科学》 EI CAS CSCD 北大核心 2020年第4期989-998,共10页
为明确草海湖水及其入湖河流硝酸盐污染的主要来源,定量分析各来源的贡献率,对草海湖水与入湖河流水化学特征和水体硝酸盐的氮氧同位素组成进行了系统研究.通过对草海湖水、河水、井水丰水期水体理化参数和同位素分析发现:湖水的NO3-/Cl... 为明确草海湖水及其入湖河流硝酸盐污染的主要来源,定量分析各来源的贡献率,对草海湖水与入湖河流水化学特征和水体硝酸盐的氮氧同位素组成进行了系统研究.通过对草海湖水、河水、井水丰水期水体理化参数和同位素分析发现:湖水的NO3-/Cl-比值和Cl-浓度表明其主要受牲畜粪便和城镇污水输入的影响,而河水与井水则受农业活动和城镇污水的共同影响.δD-water与δ18O-water显示草海水体主要源于大气降水,并有较强的蒸发作用.湖水δ15N-NO3-和δ18O-NO3-值分别为-5.56‰~11.30‰和0.02‰~25.40‰,较河水偏负而较井水偏正.稳定同位素混合模型(SIAR)计算结果表明草海湖水及其入湖河流硝酸盐主要源于化肥、土壤有机氮、牲畜粪便相关的农业活动,其贡献率在50%以上;城镇污水贡献率在22%左右;大气降水的贡献主要体现在湖水中. 展开更多
关键词 硝酸盐 来源 氮氧同位素 贡献率 草海 丰水期
下载PDF
基于硝酸盐氮氧同位素的三门峡黄河湿地硝酸盐来源分析 被引量:2
5
作者 官庆松 《绿色科技》 2022年第2期205-209,共5页
三门峡黄河湿地属于国家级湿地自然保护区,是国家级珍禽白天鹅的栖息地及重要水源涵养地。为了解湿地沉积物氮的垂直分布(0~50 cm),定性判断硝酸盐的来源,通过对河水理化参数化及不同剖面沉积物中硝酸盐氮氧同位素特征值进行分析,结果发... 三门峡黄河湿地属于国家级湿地自然保护区,是国家级珍禽白天鹅的栖息地及重要水源涵养地。为了解湿地沉积物氮的垂直分布(0~50 cm),定性判断硝酸盐的来源,通过对河水理化参数化及不同剖面沉积物中硝酸盐氮氧同位素特征值进行分析,结果发现:水体硝酸盐主要为无机氮,占比为95%,硝酸盐同位素特征值为14.89‰~15.95‰,10.78‰~13.60‰,与粪便污水相似;沉积物TON(0.01%~0.02%)和TOC(0.07~0.2%)含量较低,垂直分布变化不显著;沉积物中氨氮占无机氮的比例为68%~98%,表层沉积物中氨氮含量高于底层。沉积物δ^(15) N-NO^(-)_(3)垂直变化较大但无规律,特征值范围为-1.96‰~15.98‰,δ^(18) O-NO^(-)_(3)垂直变化较小,特征值范围为14.77‰~26.64‰,同位素特征值说明:沉积物中硝酸盐来源为混合源,其中,大气降雨和硝态氮肥为主要贡献源。 展开更多
关键词 湿地 硝酸盐 氮氧同位素 来源 三门峡水库
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部