Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/k...Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/kg,for 3 days.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.In rats administered Buyanghuanwu decoction,infarct volume was reduced,serum vascular endothelial growth factor and integrin αvβ3 levels were increased,and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals.These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor(administered through the lateral ventricle for 7 consecutive days).These data suggest that Buyanghuanwu decoction promotes angiogenesis,improves cerebral circulation,and enhances brain tissue repair after cerebral ischemia/reperfusion injury.展开更多
Platelets are small anucleate cells generated from megakaryocytes in the bone marrow. Although platelet genera- tion, maturation, and clearance are still not fully understood, significant progress has been made in the...Platelets are small anucleate cells generated from megakaryocytes in the bone marrow. Although platelet genera- tion, maturation, and clearance are still not fully understood, significant progress has been made in the last 1-2 dec- ades. In blood circulation, platelets can quickly adhere and aggregate at sites of vascular injury, forming the platelet plug (i.e. the first wave of hemostasis). Activated platelets can also provide negatively charged phosphatidylserine- rich membrane surface that enhances cell-based thrombin generation, which facilitates blood coagulation (i.e. the second wave of hemostasis). Platelets therefore play central roles in hemostasis. However, the same process of hemostasis may also cause thrombosis and vessel occlusion, which are the most common mechanisms leading to heart attack and stroke following ruptured atherosclerotic lesions. In this review, we will introduce the classical mechanisms and newly discovered pathways of platelets in hemostasis and thrombosis, including fibrinogen-inde- pendent platelet aggregation and thrombosis, and the plasma fibronectin-mediated "protein wave" of hemostasis that precedes the classical first wave of hemostasis. Furthermore, we briefly discuss the roles of platelets in inflam- marion and atherosclerosis and the potential strategies to control atherothrombosis.展开更多
基金financially supported by the National Natural Science Foundation of China,No.81072799
文摘Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/kg,for 3 days.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.In rats administered Buyanghuanwu decoction,infarct volume was reduced,serum vascular endothelial growth factor and integrin αvβ3 levels were increased,and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals.These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor(administered through the lateral ventricle for 7 consecutive days).These data suggest that Buyanghuanwu decoction promotes angiogenesis,improves cerebral circulation,and enhances brain tissue repair after cerebral ischemia/reperfusion injury.
基金supported in part by Canadian Institutes of Health Research(MOP 119540),National Natural Science Foundation of China-Canadian Institutes of Health Research(China-Canada Joint Health Research Initiative Program),Heart and Stroke Foundation of Canada(Ontario)supported by equipment Funds from St.Michael's Hospital,Canadian Blood Services,and Canada Foundation for Innovation
文摘Platelets are small anucleate cells generated from megakaryocytes in the bone marrow. Although platelet genera- tion, maturation, and clearance are still not fully understood, significant progress has been made in the last 1-2 dec- ades. In blood circulation, platelets can quickly adhere and aggregate at sites of vascular injury, forming the platelet plug (i.e. the first wave of hemostasis). Activated platelets can also provide negatively charged phosphatidylserine- rich membrane surface that enhances cell-based thrombin generation, which facilitates blood coagulation (i.e. the second wave of hemostasis). Platelets therefore play central roles in hemostasis. However, the same process of hemostasis may also cause thrombosis and vessel occlusion, which are the most common mechanisms leading to heart attack and stroke following ruptured atherosclerotic lesions. In this review, we will introduce the classical mechanisms and newly discovered pathways of platelets in hemostasis and thrombosis, including fibrinogen-inde- pendent platelet aggregation and thrombosis, and the plasma fibronectin-mediated "protein wave" of hemostasis that precedes the classical first wave of hemostasis. Furthermore, we briefly discuss the roles of platelets in inflam- marion and atherosclerosis and the potential strategies to control atherothrombosis.