In this paper, by using Gr bner-Shirshov bases theories, we prove that each countably generated associative differential algebra (resp., associative λ-algebra, associa- tive Ω-differential algebra) can be embedded...In this paper, by using Gr bner-Shirshov bases theories, we prove that each countably generated associative differential algebra (resp., associative λ-algebra, associa- tive Ω-differential algebra) can be embedded into a simple 2-generated associative differ- ential algebra (resp., associative Ωalgebra, associative λ-differential algebra).展开更多
An n × n ω-circulant matrix which has a specific structure is a type of important matrix. Several norm equalities and inequalities are proved for ω-circulant operator matrices with ω = e^(iθ)(0≤θ < 2π) ...An n × n ω-circulant matrix which has a specific structure is a type of important matrix. Several norm equalities and inequalities are proved for ω-circulant operator matrices with ω = e^(iθ)(0≤θ < 2π) in this paper. We give the special cases for norm equalities and inequalities, such as the usual operator norm and the Schatten p-norms. Pinching type inequality is also proposed for weakly unitarily invariant norms. Meanwhile,we present that the set of ω-circulant matrices with complex entries has an idempotent basis. Based on this basis, we introduce an automorphism on the ω-circulant algebra and then show different operators on linear vector space that are isomorphic to the ω-circulant algebra. The function properties, other idempotent bases and a linear involution are discussed for ω-circulant algebra. These results are closely related to the special structure of ω-circulant matrices.展开更多
A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lo...A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lou. These symmetries constitute an infinite-dimensional generalized w∞ algebra.展开更多
Let (C,α) and (H, β) be Hom-bialgebras and ω : C × H → H × C a linear map. We introduce a Horn-ω-smash coproduct (Cω H, γ) and give necessary and sufficient conditions for (Cω H, γ) to be...Let (C,α) and (H, β) be Hom-bialgebras and ω : C × H → H × C a linear map. We introduce a Horn-ω-smash coproduct (Cω H, γ) and give necessary and sufficient conditions for (Cω H, γ) to be a Hom-bialgebra. We study the quasi-triangular structures over (Cω H, γ) and show the necessary and sufficient conditions for (Cω H, γ R) to be a quasi-triangular Hom-Hopf algebra. As applications of our results, we introduce the concept of D(H)* and construct quasi-triangular structures over D(H)*.展开更多
文摘In this paper, by using Gr bner-Shirshov bases theories, we prove that each countably generated associative differential algebra (resp., associative λ-algebra, associa- tive Ω-differential algebra) can be embedded into a simple 2-generated associative differ- ential algebra (resp., associative Ωalgebra, associative λ-differential algebra).
基金supported by National Natural Science Foundation of China(Grant Nos.11301251 and 11301252)the Applied Mathematics Enhancement Program of Linyi UniversityChina
文摘An n × n ω-circulant matrix which has a specific structure is a type of important matrix. Several norm equalities and inequalities are proved for ω-circulant operator matrices with ω = e^(iθ)(0≤θ < 2π) in this paper. We give the special cases for norm equalities and inequalities, such as the usual operator norm and the Schatten p-norms. Pinching type inequality is also proposed for weakly unitarily invariant norms. Meanwhile,we present that the set of ω-circulant matrices with complex entries has an idempotent basis. Based on this basis, we introduce an automorphism on the ω-circulant algebra and then show different operators on linear vector space that are isomorphic to the ω-circulant algebra. The function properties, other idempotent bases and a linear involution are discussed for ω-circulant algebra. These results are closely related to the special structure of ω-circulant matrices.
基金浙江省自然科学基金,浙江省宁波市博士基金,the State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation,Scientific Research Fund of Education Department of Zhejiang Province under
文摘A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lou. These symmetries constitute an infinite-dimensional generalized w∞ algebra.
基金Supported by the National Natural Science Foundation of China(60873267)the Ningbo Natural Science Foundation of China(2011A610172)K.C.Wang Magna Fund in Ningbo University
文摘Let (C,α) and (H, β) be Hom-bialgebras and ω : C × H → H × C a linear map. We introduce a Horn-ω-smash coproduct (Cω H, γ) and give necessary and sufficient conditions for (Cω H, γ) to be a Hom-bialgebra. We study the quasi-triangular structures over (Cω H, γ) and show the necessary and sufficient conditions for (Cω H, γ R) to be a quasi-triangular Hom-Hopf algebra. As applications of our results, we introduce the concept of D(H)* and construct quasi-triangular structures over D(H)*.