In order to investigate the change in liquid microstructure of Al-Si alloytreated by electric pulse (EP), X-ray diffraction tests with liquid Al-Si alloy and ZL109 alloytreated or not by EP were carried out. The resul...In order to investigate the change in liquid microstructure of Al-Si alloytreated by electric pulse (EP), X-ray diffraction tests with liquid Al-Si alloy and ZL109 alloytreated or not by EP were carried out. The results show that the number of Al-Si atomic clustersdecreases and that of Al-Al and Si-Si atomic clusters increases for the treated samples. The testswith ZL109 alloy indicate that a large amount of primary crystal Si appears in the solidifiedmicrostructure after treated by EP. It is found that EP can change the microstructure of liquidmetal by affecting the probability of electrons appearing in different atoms (Al and Si) in theliquid metal. The combining force of different atoms decreases relatively, and that of the sameatoms increases, which is the main reason of reducing the atomic cluster with different atoms(Al-Si) and increasing the atomic cluster with the same atoms (Al-Al, Si-Si). The increasing of theatomic cluster with the same atom cluster resulted in the increasing of Si activity and the higherpoint of eutectics in the phase diagram. It makes a lot of primary silicon appeared in ZL109 alloy.展开更多
Understanding the process of chemical reactions has always been a relentless pursuit for chemists.The development of femtosecond pump-probe techniques since the 1980s has revolutionized the field of chemical dynamics,...Understanding the process of chemical reactions has always been a relentless pursuit for chemists.The development of femtosecond pump-probe techniques since the 1980s has revolutionized the field of chemical dynamics,enabling the capture of timeresolved snapshots of reactions on the femtosecond timescale.Starting from the 2010s,breakthroughs in femtosecond electron and X-ray sources has enabled ultrafast electron and X-ray diffraction techniques,which is able to directly reveal the temporal evolution of atomic geometries of molecules,allowing for the creation of molecular movies.Gas-phase molecular movies reveal intrinsic intramolecular processes,while liquid-phase molecular movies provide insights for complicated solvent-solute interplay.This minireview focuses on the advances in studying gasphase and liquid-phase molecular dynamics(MD)using ultrafast electron and X-ray diffraction techniques on femtosecond and picosecond timescales.The fast-developing experimental capability of the direct observation of molecular structural evolution during chemical reactions,on its natural femtosecond timescale and subangstrom length scale,offers tremendous potential for the field of chemical kinetics and MD.展开更多
Backgroundand Originality Content,Cembranoids are a structurally diverse class of diterpenoids commonly occurring in marine and terrestrial organisms.(+)-Cembrene was the first reported cembranoid diterpenoid discover...Backgroundand Originality Content,Cembranoids are a structurally diverse class of diterpenoids commonly occurring in marine and terrestrial organisms.(+)-Cembrene was the first reported cembranoid diterpenoid discovered in 1962,l and more than 1400 cembranoid diterpenoids have been identified in the last six decades,[2]Cembranoids are characterized by a 14-membered carbocyclic ring,an isopropyl group and three methyl groups,which form their core carbon skeleton.Enzymatic processes such as oxidation,oxidative rearrangements and transannular cyclizations occur in organisms,leading to the formation of distinctive specialized metabolites such as epoxide,lactone,ester,furan,pyrane and other ringbased cembranoids.[2-3]展开更多
The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x v...The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) were synthesized bystandard solid state reaction technique. The high and low temperature X-ray diffraction analysisindicate that the substitution of the Hf^(4+) for Zr^(4+) only leads to reducing the latticeconstants, and the changes of negative thermal expansion coefficients are not obvious. The linearexpansion coefficients of Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) are about -6 X 10^(-6) K^(-1) in the temperature range of 298 to 973 K, while that of Zr_(0.5)Hf_(0.5)W_2O_8 is -9.6X 10^(-6) K_(-1) from 83 to 298 K. The phase transition temperatures from alpha-ZrW_2O_8 tobeta-ZrW_2O_8 structure were also determined by X-ray diffraction method. Thermogravimetric analysis(TGA) exhibits that Zr_(1-x)Hf_xW_2O_8 is not hygroscopic in air.展开更多
Third generation synchrotron X-rays provide an unprecedented opportu- nity for microstructural characterization of many engineering materials as well as natural materials. This article demonstrates the usage of three ...Third generation synchrotron X-rays provide an unprecedented opportu- nity for microstructural characterization of many engineering materials as well as natural materials. This article demonstrates the usage of three techniques for the study of structural materials: differential-aperture X-ray microscopy (DAXM), three-dimensional X- ray diffraction (3DXRD), and simultaneous wide angle/small angle X-ray scattering (WAXS/SAXS). DAXM is able to measure the 3D grain structure in polycrystalline materials with high spatial and angular resolution. In a deformed material, streaked diffraction peaks can be used to analyze local dislocation content in individual grains. Compared to DAXM, 3DXRD is able to map grains in bulk materials more quickly at the expense of spatial resolution. It is very useful for studying evolving microstructures when the materials are under deformation. WAXS/SAXS is suitable for studying materials with inhomogeneous structure, such as precipitate strengthened alloys. Structural informa- tion revealed by WAXS and SAXS can be combined for a deeper insight into material behavior. Future development and applications of these three techniques will also be discussed.展开更多
Bipyramidal Au microcrystallites have been synthesized by thermalizing a Au-organic complex in the presence of Ag(I) ions, the latter acting as a shape- directing agent. With a highly corrugated morphology leading t...Bipyramidal Au microcrystallites have been synthesized by thermalizing a Au-organic complex in the presence of Ag(I) ions, the latter acting as a shape- directing agent. With a highly corrugated morphology leading to strain-induced non-face-centered cubic (non-FCC) Au phases, the non-FCC portion can be tuned by varying the Ag/Au ratio, as verified by diffraction measurements. For a Ag/Au ratio of 0.34, the non-FCC Au portion was as high as 85%. X-ray microdiffraction and electron diffraction measurements reveal that the non-FCC contribution comes primarily from bipyramids, while other microcrystallites, namely, tetrahexahedrons and hexagrams, host non-FCC phases only at the edges and, to an even lesser extent, at the comers. When used as a catalyst for p-nitrophenol reduction, the non-FCC microcrystallites exhibit a significantly enhanced activity compared to FCC Au, which shows only negligible activity. These results are in accordance with trends in the values of two descriptors of reactivity calculated from first principles: The effective coordination number is found to decrease and the d-band center is found to increase in energy going from the FCC to the non-FCC phases of Au. Our findings contradict the general notion that Au is catalytically active only in nanodimensions and is otherwise inert; in this system, its activity arises from the non-FCC phases.展开更多
Magnetic Fe3O4 nanomagnetic particles were synthesized by the titration co-precipitation method followed by coating by the sol-gel method with Titamiun dioxide. The photocalytic activities of different synthesized TiO...Magnetic Fe3O4 nanomagnetic particles were synthesized by the titration co-precipitation method followed by coating by the sol-gel method with Titamiun dioxide. The photocalytic activities of different synthesized TiO2/Fe304 nanomagnetic particles with different molar ratios of TiO2 to Fe3O4 were investigated by the reduction of phosphate, nitrate and decolorizing of methyl blue solutions. X-ray diffraction was used to characterize the size, composition and morphology of the synthesized particles. The results obtained from these experiments indicate an increase in the photocatalytic activity as the amount of TiO2 coating increases. The results show a higher activity of the synthesized particles in the removal of phosphate, nitrate and methyl blue, which can be achieved at early reaction periods at about 70-80%. The activities were higher when the particles were incubated without UV illumination. This study shows that TiO2/Fe3O4 particles are effective in phosphate, nitrate and methyl blue removal in wastewater treatment.展开更多
文摘In order to investigate the change in liquid microstructure of Al-Si alloytreated by electric pulse (EP), X-ray diffraction tests with liquid Al-Si alloy and ZL109 alloytreated or not by EP were carried out. The results show that the number of Al-Si atomic clustersdecreases and that of Al-Al and Si-Si atomic clusters increases for the treated samples. The testswith ZL109 alloy indicate that a large amount of primary crystal Si appears in the solidifiedmicrostructure after treated by EP. It is found that EP can change the microstructure of liquidmetal by affecting the probability of electrons appearing in different atoms (Al and Si) in theliquid metal. The combining force of different atoms decreases relatively, and that of the sameatoms increases, which is the main reason of reducing the atomic cluster with different atoms(Al-Si) and increasing the atomic cluster with the same atoms (Al-Al, Si-Si). The increasing of theatomic cluster with the same atom cluster resulted in the increasing of Si activity and the higherpoint of eutectics in the phase diagram. It makes a lot of primary silicon appeared in ZL109 alloy.
基金the National Key Research and Development Program of China(grant no.2021YFA1601200)the National Natural Science Foundation of China(grant no.22273044).
文摘Understanding the process of chemical reactions has always been a relentless pursuit for chemists.The development of femtosecond pump-probe techniques since the 1980s has revolutionized the field of chemical dynamics,enabling the capture of timeresolved snapshots of reactions on the femtosecond timescale.Starting from the 2010s,breakthroughs in femtosecond electron and X-ray sources has enabled ultrafast electron and X-ray diffraction techniques,which is able to directly reveal the temporal evolution of atomic geometries of molecules,allowing for the creation of molecular movies.Gas-phase molecular movies reveal intrinsic intramolecular processes,while liquid-phase molecular movies provide insights for complicated solvent-solute interplay.This minireview focuses on the advances in studying gasphase and liquid-phase molecular dynamics(MD)using ultrafast electron and X-ray diffraction techniques on femtosecond and picosecond timescales.The fast-developing experimental capability of the direct observation of molecular structural evolution during chemical reactions,on its natural femtosecond timescale and subangstrom length scale,offers tremendous potential for the field of chemical kinetics and MD.
基金supported by the National Natural Science Foundation of China(No.U2006204).
文摘Backgroundand Originality Content,Cembranoids are a structurally diverse class of diterpenoids commonly occurring in marine and terrestrial organisms.(+)-Cembrene was the first reported cembranoid diterpenoid discovered in 1962,l and more than 1400 cembranoid diterpenoids have been identified in the last six decades,[2]Cembranoids are characterized by a 14-membered carbocyclic ring,an isopropyl group and three methyl groups,which form their core carbon skeleton.Enzymatic processes such as oxidation,oxidative rearrangements and transannular cyclizations occur in organisms,leading to the formation of distinctive specialized metabolites such as epoxide,lactone,ester,furan,pyrane and other ringbased cembranoids.[2-3]
基金This project is financially supported by the National Natural Science Foundation of China (No. 50002001) the Natural Science Foundation of Yunnan Province (No. 2000E0006Q)
文摘The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) were synthesized bystandard solid state reaction technique. The high and low temperature X-ray diffraction analysisindicate that the substitution of the Hf^(4+) for Zr^(4+) only leads to reducing the latticeconstants, and the changes of negative thermal expansion coefficients are not obvious. The linearexpansion coefficients of Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) are about -6 X 10^(-6) K^(-1) in the temperature range of 298 to 973 K, while that of Zr_(0.5)Hf_(0.5)W_2O_8 is -9.6X 10^(-6) K_(-1) from 83 to 298 K. The phase transition temperatures from alpha-ZrW_2O_8 tobeta-ZrW_2O_8 structure were also determined by X-ray diffraction method. Thermogravimetric analysis(TGA) exhibits that Zr_(1-x)Hf_xW_2O_8 is not hygroscopic in air.
文摘Third generation synchrotron X-rays provide an unprecedented opportu- nity for microstructural characterization of many engineering materials as well as natural materials. This article demonstrates the usage of three techniques for the study of structural materials: differential-aperture X-ray microscopy (DAXM), three-dimensional X- ray diffraction (3DXRD), and simultaneous wide angle/small angle X-ray scattering (WAXS/SAXS). DAXM is able to measure the 3D grain structure in polycrystalline materials with high spatial and angular resolution. In a deformed material, streaked diffraction peaks can be used to analyze local dislocation content in individual grains. Compared to DAXM, 3DXRD is able to map grains in bulk materials more quickly at the expense of spatial resolution. It is very useful for studying evolving microstructures when the materials are under deformation. WAXS/SAXS is suitable for studying materials with inhomogeneous structure, such as precipitate strengthened alloys. Structural informa- tion revealed by WAXS and SAXS can be combined for a deeper insight into material behavior. Future development and applications of these three techniques will also be discussed.
文摘Bipyramidal Au microcrystallites have been synthesized by thermalizing a Au-organic complex in the presence of Ag(I) ions, the latter acting as a shape- directing agent. With a highly corrugated morphology leading to strain-induced non-face-centered cubic (non-FCC) Au phases, the non-FCC portion can be tuned by varying the Ag/Au ratio, as verified by diffraction measurements. For a Ag/Au ratio of 0.34, the non-FCC Au portion was as high as 85%. X-ray microdiffraction and electron diffraction measurements reveal that the non-FCC contribution comes primarily from bipyramids, while other microcrystallites, namely, tetrahexahedrons and hexagrams, host non-FCC phases only at the edges and, to an even lesser extent, at the comers. When used as a catalyst for p-nitrophenol reduction, the non-FCC microcrystallites exhibit a significantly enhanced activity compared to FCC Au, which shows only negligible activity. These results are in accordance with trends in the values of two descriptors of reactivity calculated from first principles: The effective coordination number is found to decrease and the d-band center is found to increase in energy going from the FCC to the non-FCC phases of Au. Our findings contradict the general notion that Au is catalytically active only in nanodimensions and is otherwise inert; in this system, its activity arises from the non-FCC phases.
文摘Magnetic Fe3O4 nanomagnetic particles were synthesized by the titration co-precipitation method followed by coating by the sol-gel method with Titamiun dioxide. The photocalytic activities of different synthesized TiO2/Fe304 nanomagnetic particles with different molar ratios of TiO2 to Fe3O4 were investigated by the reduction of phosphate, nitrate and decolorizing of methyl blue solutions. X-ray diffraction was used to characterize the size, composition and morphology of the synthesized particles. The results obtained from these experiments indicate an increase in the photocatalytic activity as the amount of TiO2 coating increases. The results show a higher activity of the synthesized particles in the removal of phosphate, nitrate and methyl blue, which can be achieved at early reaction periods at about 70-80%. The activities were higher when the particles were incubated without UV illumination. This study shows that TiO2/Fe3O4 particles are effective in phosphate, nitrate and methyl blue removal in wastewater treatment.