The aim of this study was to design and construct an improved response surface method(RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam.The limitation and lacuna of the ...The aim of this study was to design and construct an improved response surface method(RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam.The limitation and lacuna of the traditional RSM were briefly analyzed.Firstly,based on small experimental points,research was devoted to an improved RSM with singular value decomposition techniques.Then,the method was used on the basis of weighted regression and deviation coefficient correction to reduce iteration times and experimental points and improve the calculation method of checking point.Finally,a test example was given to verify this method.Compared with other conventional algorithms,this method has some strong advantages:this algorithm not only saves the arithmetic operations but also greatly enhances the calculation efficiency and the storage efficiency.展开更多
基金supported by the National Basic Research Program of China (Nos. 2007CB714107 and 90510018)the Trans-Century Training Programme Foundation for the Talents by the State Education Com-mission (No. NCET-06-0270),China
文摘The aim of this study was to design and construct an improved response surface method(RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam.The limitation and lacuna of the traditional RSM were briefly analyzed.Firstly,based on small experimental points,research was devoted to an improved RSM with singular value decomposition techniques.Then,the method was used on the basis of weighted regression and deviation coefficient correction to reduce iteration times and experimental points and improve the calculation method of checking point.Finally,a test example was given to verify this method.Compared with other conventional algorithms,this method has some strong advantages:this algorithm not only saves the arithmetic operations but also greatly enhances the calculation efficiency and the storage efficiency.