This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from...This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from weighted Lebesgue spaces LP(w) to weighted Morrey spaces Mpq(ω) for 1 〈 q 〈 p 〈 ∞. As a corollary, if M is (weak) bounded on Mpq(ω), then ω∈Ap. The Ap condition also characterizes the boundedness of the Riesz transform Rj and convolution operators Tε on weighted Morrey spaces. Finally, we show that ω∈Ap if and only if ω∈BMOp' (ω) for 1 ≤ p 〈 ∞ and 1/p + 1/p' = 1.展开更多
Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this pa...Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this paper, the boundedness of Tb on weighted Morrey space are obtained when b belongs to the weighted Lipschitz function space and weighted BMO function space, respectively.展开更多
The aim of this paper is to set up the weighted norm inequalities for commutators generated by approximate identities from weighted Lebesgue spaces into weighted Morrey spaces
Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib i...Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib is the fractional integral operator. In this paper, we investigate the boundedness of the operator Tb on the weighted Morrey space when b belongs to the weighted BMO space.展开更多
In this note, the author prove that maximal Bocher-Riesz commutator Bδ,*^b generated by operator Bδ,* and function b∈ BMO(ω) is a bounded operator from L^p(μ) into L^p(ν), where w∈ (μν^- 1)^1/p,μ...In this note, the author prove that maximal Bocher-Riesz commutator Bδ,*^b generated by operator Bδ,* and function b∈ BMO(ω) is a bounded operator from L^p(μ) into L^p(ν), where w∈ (μν^- 1)^1/p,μ,v ∈ Ap for 1 〈 p 〈 ∞. The proof relies heavily on the pointwise estimates for the sharp maximal function of the commutator Bδ,*^b.展开更多
In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of si...In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of singular integral with a rough kernel on the weighted λ-central Morrey space is also given.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11661075)
文摘This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from weighted Lebesgue spaces LP(w) to weighted Morrey spaces Mpq(ω) for 1 〈 q 〈 p 〈 ∞. As a corollary, if M is (weak) bounded on Mpq(ω), then ω∈Ap. The Ap condition also characterizes the boundedness of the Riesz transform Rj and convolution operators Tε on weighted Morrey spaces. Finally, we show that ω∈Ap if and only if ω∈BMOp' (ω) for 1 ≤ p 〈 ∞ and 1/p + 1/p' = 1.
文摘Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this paper, the boundedness of Tb on weighted Morrey space are obtained when b belongs to the weighted Lipschitz function space and weighted BMO function space, respectively.
基金supported by the NSF(11271175) of Chinathe NSF(ZR2012AQ026) of Shandong Province
文摘The aim of this paper is to set up the weighted norm inequalities for commutators generated by approximate identities from weighted Lebesgue spaces into weighted Morrey spaces
文摘Let T1 be a singular integral with non-smooth kernel or ±I, let T2 and T4 be the linear operators and let T3 = ± I. Denote the Toeplitz type operator by Tb = T1M^b Ia T2 + T3IaMbT4,where M^bf = bf, and Ib is the fractional integral operator. In this paper, we investigate the boundedness of the operator Tb on the weighted Morrey space when b belongs to the weighted BMO space.
基金supported by the NNSF (10961015, 11261023) of Chinathe Jiangxi Natural Science Foundation of China (20122BAB201011), GJJ12203
文摘In this note, the author prove that maximal Bocher-Riesz commutator Bδ,*^b generated by operator Bδ,* and function b∈ BMO(ω) is a bounded operator from L^p(μ) into L^p(ν), where w∈ (μν^- 1)^1/p,μ,v ∈ Ap for 1 〈 p 〈 ∞. The proof relies heavily on the pointwise estimates for the sharp maximal function of the commutator Bδ,*^b.
基金Supported by the National Natural Science Foundation of China(11561057,11226104)the Jiangxi Natural Science Foundation of China(20151BAB211002)+1 种基金the Science Foundation of Jiangxi Education Department(GJJ151054)the Scientific Research project of Shangrao Normal University
文摘In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of singular integral with a rough kernel on the weighted λ-central Morrey space is also given.