Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge(RLSC)are investigated by experiments and simulations.The reactive materials liner with a density of2.3 g/cm^3 is fab...Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge(RLSC)are investigated by experiments and simulations.The reactive materials liner with a density of2.3 g/cm^3 is fabricated by cold pressing at a pressure of 300 MPa and sintering at a temperature of 380℃.Experiments of the RLSC with and without wave shaper against steel plates are carried out at standoffs of0.5,1.0,and 1.5 CD(charge diameter),respectively.The experimental results show that the penetration depths and structural damage effects of steel plates decrease with increasing the standoff,while the penetration depths and the damage effects of RLSC without wave shaper are much greater than that with wave shaper at the same standoff.To understand the unusual experimental results,numerical simulations based on AUTODYN-2 D code are conducted to discuss the wave shaper effect,including the propagation behavior of detonation wave,the velocity and temperature distribution of reactive jet,and penetration depth of reactive jet.The simulations indicate that,compared with RLSC without wave shaper,there is a higher temperature produced inside reactive jet with wave shaper.This unusual temperature rise effects are likely to be an important mechanism to cause the initiation delay time of reactive jet to decline,which results in significantly decreasing its penetration performance.展开更多
In the current study, streak camera was used to find concentricity of the assembly during detonation,investigate and compare shock front within the high explosive and behavior of the shock front on the surface of the ...In the current study, streak camera was used to find concentricity of the assembly during detonation,investigate and compare shock front within the high explosive and behavior of the shock front on the surface of the liner, one containing wave shaper and the other without wave shaper. Streaks revealed that the whole assembly was concentric till the formation of the jet. Observed streaks vindicate the uniform propagation of shock front in both the cases. Results obtained for shock front velocities are in agreement with those obtained from simulations. In the presence of wave shaper higher shock front velocity was observed both in simulation and experiment. Simulation without wave-shaper showed that shock front struck the copper cone at grazing angle while in the presence of wave-shaper it struck at an angle of 125.展开更多
When a wave shaper is embedded in a liner,Mach wave will emerge above the liner,which affects the head shape of an explosively formed projectile.Mach wave parameters,including radius and pressure need to be determined...When a wave shaper is embedded in a liner,Mach wave will emerge above the liner,which affects the head shape of an explosively formed projectile.Mach wave parameters,including radius and pressure need to be determined to effectively match Mach wave with the liner,so that a good head shape can be obtained.An analytical calculation model for Mach wave parameter is presented based on three-shock theory,and the theoretical values agree well with the experimental ones.The analysis shows that when the radius of the wave shaper is constant,the radius of the Mach wave increases,whereas the pressure decreases while increasing the distance between the liner and the wave shaper.When the distance between the liner and the wave shaper is constant,the radius of the Mach wave increases,whereas the pressure decreases when decreasing the radius of the wave shaper.展开更多
A new current feedback amplifier (CFA) based dual-input differentiator (DID) design with grounded capacitor is presented;its time constant (τo) is independently tunable by a single resistor. The proposed circuit yiel...A new current feedback amplifier (CFA) based dual-input differentiator (DID) design with grounded capacitor is presented;its time constant (τo) is independently tunable by a single resistor. The proposed circuit yields a true DID function with ideal CFA devices. Analysis with nonideal devices having parasitic capacitance (Cp) shows extremely low but finite phase error (θe);suitable design θe could be minimized significantly. The design is practically active-insensitive relative to port mismatch errors (ε) of the active element. An allpass phase shifter circuit implementation is derived with slight modification of the differentiator. Satisfactory experimental results had been verified on typical wave processing and phase-selective filter design applications.展开更多
基金funded under the National Natural Science Foundation of China (No. U1730112)supported by the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology
文摘Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge(RLSC)are investigated by experiments and simulations.The reactive materials liner with a density of2.3 g/cm^3 is fabricated by cold pressing at a pressure of 300 MPa and sintering at a temperature of 380℃.Experiments of the RLSC with and without wave shaper against steel plates are carried out at standoffs of0.5,1.0,and 1.5 CD(charge diameter),respectively.The experimental results show that the penetration depths and structural damage effects of steel plates decrease with increasing the standoff,while the penetration depths and the damage effects of RLSC without wave shaper are much greater than that with wave shaper at the same standoff.To understand the unusual experimental results,numerical simulations based on AUTODYN-2 D code are conducted to discuss the wave shaper effect,including the propagation behavior of detonation wave,the velocity and temperature distribution of reactive jet,and penetration depth of reactive jet.The simulations indicate that,compared with RLSC without wave shaper,there is a higher temperature produced inside reactive jet with wave shaper.This unusual temperature rise effects are likely to be an important mechanism to cause the initiation delay time of reactive jet to decline,which results in significantly decreasing its penetration performance.
文摘In the current study, streak camera was used to find concentricity of the assembly during detonation,investigate and compare shock front within the high explosive and behavior of the shock front on the surface of the liner, one containing wave shaper and the other without wave shaper. Streaks revealed that the whole assembly was concentric till the formation of the jet. Observed streaks vindicate the uniform propagation of shock front in both the cases. Results obtained for shock front velocities are in agreement with those obtained from simulations. In the presence of wave shaper higher shock front velocity was observed both in simulation and experiment. Simulation without wave-shaper showed that shock front struck the copper cone at grazing angle while in the presence of wave-shaper it struck at an angle of 125.
文摘When a wave shaper is embedded in a liner,Mach wave will emerge above the liner,which affects the head shape of an explosively formed projectile.Mach wave parameters,including radius and pressure need to be determined to effectively match Mach wave with the liner,so that a good head shape can be obtained.An analytical calculation model for Mach wave parameter is presented based on three-shock theory,and the theoretical values agree well with the experimental ones.The analysis shows that when the radius of the wave shaper is constant,the radius of the Mach wave increases,whereas the pressure decreases while increasing the distance between the liner and the wave shaper.When the distance between the liner and the wave shaper is constant,the radius of the Mach wave increases,whereas the pressure decreases when decreasing the radius of the wave shaper.
文摘A new current feedback amplifier (CFA) based dual-input differentiator (DID) design with grounded capacitor is presented;its time constant (τo) is independently tunable by a single resistor. The proposed circuit yields a true DID function with ideal CFA devices. Analysis with nonideal devices having parasitic capacitance (Cp) shows extremely low but finite phase error (θe);suitable design θe could be minimized significantly. The design is practically active-insensitive relative to port mismatch errors (ε) of the active element. An allpass phase shifter circuit implementation is derived with slight modification of the differentiator. Satisfactory experimental results had been verified on typical wave processing and phase-selective filter design applications.