The problem of vibration isolation by rectangular open trenches in a plane strain context is numerically studied using a finite element code, PLAXIS. The soil media is assumed to be linear elastic, isotropic, and homo...The problem of vibration isolation by rectangular open trenches in a plane strain context is numerically studied using a finite element code, PLAXIS. The soil media is assumed to be linear elastic, isotropic, and homogeneous subjected to a vertical harmonic load producing steady-state vibration. The present model is validated by comparing it with previously published works. The key geometrical features of a trench, i.e., its depth, width, and distance from the source of excitation, are normalized with respect to the Rayleigh wavelength. The attenuation of vertical and horizontal components of vibration is studied for various trench dimensions against trench locations varied from an active to a passive case. Results are depicted in non-dimensional forms and conclusions are drawn regarding the effects of geometrical parameters in attenuating vertical and horizontal vibration components. The screening efficiency is primarily governed by the normalized depth of the barrier. The effect of width has little significance except in some specific cases. Simplified regression models are developed to estimate average amplitude reduction factors. The models applicable to vertical vibration cases are found to be in excellent agreement with previously published results.展开更多
With the accelerating development of electronic technology, how to effectively eliminate electromagnetic radiation pollution has become a critical issue. Electromagnetic wave (EMW) absorption materials have an irrepla...With the accelerating development of electronic technology, how to effectively eliminate electromagnetic radiation pollution has become a critical issue. Electromagnetic wave (EMW) absorption materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control. In order to cope with the complicated electromagnetic environment, the design of multifunctional and multiband high-efficiency EMW absorbers remains a daunting challenge. In this work, a hierarchical porous molybdenum carbide matrix with a three-dimensional porous structure was designed by salt melt synthesis (SMS) strategy. Furthermore, the relationship between the structure and the impedance matching performance was explored by stepwise modification via ultrathin layered MoS_(2) nanoflakes. Analysis indicates that the extent of modification of hierarchical porous molybdenum carbide by MoS_(2) nanoflakes modulates the dielectric performance due to differences in morphology and the introduction of heterogeneous structures, along with a dramatic impact on the impedance matching performance. In particular, the prepared MS/MC/PNC-2 composite exhibits a reflection loss (RL) of -55.30 dB at 2.4 mm, and an ultra-broad effective absorption bandwidth (EAB) of 7.60 GHz is obtained at 2.0 mm. The coordination of structure and component enables the absorber to exhibit strong absorption, wide bandwidth, thin thickness, and multi-band absorption characteristics. Noticeably, the effective absorption performance in the broadband for X and Ku is also satisfying, as well as possessing moderate marine anti-corrosion performance. This study contributes to an in-depth understanding of the relationship between impedance matching and EMW absorber performance and provides a reference for the design of multifunctional, multiband microwave absorbing materials.展开更多
In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their ...In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyl- disiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, re- spectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiO~ coatings demon- strated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2 : 1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.展开更多
利用边界元法研究声屏障屏体吸声性能布局对道路双侧声屏障插入损失的影响。对于由全反射屏体和全吸声屏体组合而成的声屏障,当两种具有不同吸声性能屏体的面积比相等时,在全吸声和全反射屏体两等分的情况下,屏体布局在多数受声点对于...利用边界元法研究声屏障屏体吸声性能布局对道路双侧声屏障插入损失的影响。对于由全反射屏体和全吸声屏体组合而成的声屏障,当两种具有不同吸声性能屏体的面积比相等时,在全吸声和全反射屏体两等分的情况下,屏体布局在多数受声点对于线性声级插入损失基本没有明显区别;在全吸声和全反射屏体四等分的情况下,插入损失最高的布局相对于插入损失最低的布局的改善量最高可达1.5 d B。计算得出,声屏障迎声面上部与底部的屏体吸声性能对声屏障的插入损失影响最大,屏体上部与底部为全吸声的布局总是具有最高的插入损失,而在上部与底部这两部分中,靠近上部屏体的吸声性能对声屏障插入损失改善的影响要比底部屏体更占主要作用。展开更多
Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is a...Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave rim-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave rim-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.展开更多
文摘The problem of vibration isolation by rectangular open trenches in a plane strain context is numerically studied using a finite element code, PLAXIS. The soil media is assumed to be linear elastic, isotropic, and homogeneous subjected to a vertical harmonic load producing steady-state vibration. The present model is validated by comparing it with previously published works. The key geometrical features of a trench, i.e., its depth, width, and distance from the source of excitation, are normalized with respect to the Rayleigh wavelength. The attenuation of vertical and horizontal components of vibration is studied for various trench dimensions against trench locations varied from an active to a passive case. Results are depicted in non-dimensional forms and conclusions are drawn regarding the effects of geometrical parameters in attenuating vertical and horizontal vibration components. The screening efficiency is primarily governed by the normalized depth of the barrier. The effect of width has little significance except in some specific cases. Simplified regression models are developed to estimate average amplitude reduction factors. The models applicable to vertical vibration cases are found to be in excellent agreement with previously published results.
基金financially supported by the National Natural Science Foundation of China(Nos.52377026 and 52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+8 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCX-ZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)Natural Science Foundation of Hubei province(No.2024AFB460)the Scientific Research Foundation for Ph.Ds,Hubei University of Automotive Technology(No.BK202304)Guiding Project of the State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology(No.P2021-023)the Outstanding Young Scientific & Technological Innovation Team Plan of Colleges and Universities in Hubei Province(No.T201518)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-30)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘With the accelerating development of electronic technology, how to effectively eliminate electromagnetic radiation pollution has become a critical issue. Electromagnetic wave (EMW) absorption materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control. In order to cope with the complicated electromagnetic environment, the design of multifunctional and multiband high-efficiency EMW absorbers remains a daunting challenge. In this work, a hierarchical porous molybdenum carbide matrix with a three-dimensional porous structure was designed by salt melt synthesis (SMS) strategy. Furthermore, the relationship between the structure and the impedance matching performance was explored by stepwise modification via ultrathin layered MoS_(2) nanoflakes. Analysis indicates that the extent of modification of hierarchical porous molybdenum carbide by MoS_(2) nanoflakes modulates the dielectric performance due to differences in morphology and the introduction of heterogeneous structures, along with a dramatic impact on the impedance matching performance. In particular, the prepared MS/MC/PNC-2 composite exhibits a reflection loss (RL) of -55.30 dB at 2.4 mm, and an ultra-broad effective absorption bandwidth (EAB) of 7.60 GHz is obtained at 2.0 mm. The coordination of structure and component enables the absorber to exhibit strong absorption, wide bandwidth, thin thickness, and multi-band absorption characteristics. Noticeably, the effective absorption performance in the broadband for X and Ku is also satisfying, as well as possessing moderate marine anti-corrosion performance. This study contributes to an in-depth understanding of the relationship between impedance matching and EMW absorber performance and provides a reference for the design of multifunctional, multiband microwave absorbing materials.
基金supported financially by National Natural Science Foundation of China(Nos.1117502411375031)+8 种基金Beijing Natural Science Foundation(No.1112012)the National Science & Technology Pillar Program for the 12th Five-year Plan2011BAD24B01Beijing Education Committee Foundation of Science and Technology(Nos.KM2011100015008KM201010015005)BIGC Key Project(No.23190113051)PHR20110516PHR201107145Fujian Provincial Department of Science and Technology Key Project of China(No.2012H0008)
文摘In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyl- disiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, re- spectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiO~ coatings demon- strated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2 : 1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.
文摘利用边界元法研究声屏障屏体吸声性能布局对道路双侧声屏障插入损失的影响。对于由全反射屏体和全吸声屏体组合而成的声屏障,当两种具有不同吸声性能屏体的面积比相等时,在全吸声和全反射屏体两等分的情况下,屏体布局在多数受声点对于线性声级插入损失基本没有明显区别;在全吸声和全反射屏体四等分的情况下,插入损失最高的布局相对于插入损失最低的布局的改善量最高可达1.5 d B。计算得出,声屏障迎声面上部与底部的屏体吸声性能对声屏障的插入损失影响最大,屏体上部与底部为全吸声的布局总是具有最高的插入损失,而在上部与底部这两部分中,靠近上部屏体的吸声性能对声屏障插入损失改善的影响要比底部屏体更占主要作用。
基金supported by the National Natural Science Foundation of China (Grant No.10702042)the Scientific Reseasch Startup Foundation of Shanghai Jiao Tong University (Grant No. A2823B) the Shanghai Leading Academic Discipline Project (Grant No.B206)
文摘Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave rim-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave rim-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.