Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/mar...Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/martensitic steel, designated as China Nuclear Steel- I (CNS- I ), was patterned after T91 steel (modified 9Cr-lMo) for the reactor. The idea of low activation material and microalloy technology was introduced into the design of the steel. The hardening, tempering and transformation behaviour of CNS- I steel was investigated. The steel has advantages in tensile properties at elevated temperature relative to zircaloy that has been widely used as cladding material for conventional light water reactors. CNS- I steel exhibits tensile properties and impact toughness comparable to T91 steel which exhibits availability in the present fission reactors and fast breeder reactor but includes undesired radioactive elements such as molybdenum and niobium.展开更多
This paper discusses mineral composition and pore microstructure characteristics of water-cooled manganese slag and its effects on durability of concrete. The Mn slag has an alveolate pore structure, and the ground Mn...This paper discusses mineral composition and pore microstructure characteristics of water-cooled manganese slag and its effects on durability of concrete. The Mn slag has an alveolate pore structure, and the ground Mn slag is characterized by multiangular shape which consists of a'-C2S, C3M82, CaO.MnO-2SiOu and C2AS. Experimental results show that the Mn slag has potential hydraulic reactivity. Concrete made with Mn slag as supplementary cementitious materials (SCMs) exhibits very low strength loss and weight loss in the synthetic seawater corrosion and freezing-thawing cycle tests. The research provides useful reference for knowing about Mn slag and for applying Mn slag to improve the durability of concrete.展开更多
The high repetition rate 10 J/10 ns Yb:YAG laser system and its key techniques are reported.The amplifiers in this system have a multi-pass V-shape structure and the heat in the amplifiers is removed by means of lamin...The high repetition rate 10 J/10 ns Yb:YAG laser system and its key techniques are reported.The amplifiers in this system have a multi-pass V-shape structure and the heat in the amplifiers is removed by means of laminar water flow.In the main amplifier,the laser is four-pass,and an approximately 8.5 J/1 Hz/10 ns output is achieved in the primary test.The far-field of the output beam is approximately 10 times the diffraction limit.Because of the higher levels of amplified spontaneous emission(ASE) in the main amplifier,the output energy is lower than expected.At the end we discuss some measures that can improve the properties of the laser system.展开更多
AIM: To discuss the safety, feasibility and regularity of destruction to porcine spleen in vivo with congestion and tumescence by microwave ablation (MWA). METHODS: Ligation of the splenic vein was used to induce cong...AIM: To discuss the safety, feasibility and regularity of destruction to porcine spleen in vivo with congestion and tumescence by microwave ablation (MWA). METHODS: Ligation of the splenic vein was used to induce congestion and tumescence in vivo in five porcine spleens, and microwave ablation was performed 2-4 h later. A total of 56 ablation points were ablated and the ablation powers were 30-100 W. The ablation time (1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 min) was performed at a power of 60 W. After ablation, the ablation size was measured in pigs A, C, D and E and spleen resection. In pig B, the ablation size was measuredand 2 ablation points were sent for pathology analysis and all tissues were sutured following ablation. Pig B was killed 1 wk later and the ablation points were sent for pathology analysis. Bleeding, tissue carbonization surrounding electrodes, and pathological changes were observed, and the effect on destruction volume relative to different ablation powers, times and positions was analyzed. RESULTS: The incidence of bleeding (only small amounts, < 20 mL) in the course of ablation was 5.4% (3/56) and was attributed to tissue carbonization surrounding electrodes, which also exhibited an incidence of 5.4% (3/56). The destruction volume was influenced by different ablation powers, times and points. It showed that the ablation lesion size increased with increased ablation time, from 1 to 10 min, when the ablation power was 60 W. Also, the ablation lesion size increased with the increase of ablation power, ranging from 30 to 100 W when the ablation time was set to 3 min. A direct correlation was seen between the destruction volume and ablation time by the power of 60 W (r = 0.97542, P < 0.0001, and also between the destruction volume and ablation powers at an ablation time of 3 min (r = 0.98258, P < 0.0001). The destruction volume of zone Ⅱ (the extra-2/3 part of the spleen, relative to the fi rst or second class vascular branches), which was near the hilum of the spleen, was noteably larger than the d展开更多
Formation of macrosegregation of 5 t steel ingots cast in sand molds with and without water-cooled copper tube is simulated by solving macroscopic mass, momentum, species and energy conservation equations with the con...Formation of macrosegregation of 5 t steel ingots cast in sand molds with and without water-cooled copper tube is simulated by solving macroscopic mass, momentum, species and energy conservation equations with the consideration of shrinkage formation. Predicted macrosegregation pattern of the ingots shows a fair agreement with the experimental data. Both calculations and experiments reveal that some positive segregation patches are formed at the bottom of ingot. With the water-cooled copper tube inserted in the sand mold, the ingot cast has a less intensive macrosegregation. Mechanisms of macrosegregation formation are numerically analyzed. Explanations regarding the influences of fluid flow and temperature change upon the segregation formation are provided.展开更多
基金Item Sponsored by National Basic Research Program(973 Program) of China (2007CB209800)
文摘Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/martensitic steel, designated as China Nuclear Steel- I (CNS- I ), was patterned after T91 steel (modified 9Cr-lMo) for the reactor. The idea of low activation material and microalloy technology was introduced into the design of the steel. The hardening, tempering and transformation behaviour of CNS- I steel was investigated. The steel has advantages in tensile properties at elevated temperature relative to zircaloy that has been widely used as cladding material for conventional light water reactors. CNS- I steel exhibits tensile properties and impact toughness comparable to T91 steel which exhibits availability in the present fission reactors and fast breeder reactor but includes undesired radioactive elements such as molybdenum and niobium.
基金the National Basic Research Program(973) of China(No.2009CB326200)the Guangxi Technology and Science Development Program (Nos.11107024-4,0842003-17 and 0842003-3A)
文摘This paper discusses mineral composition and pore microstructure characteristics of water-cooled manganese slag and its effects on durability of concrete. The Mn slag has an alveolate pore structure, and the ground Mn slag is characterized by multiangular shape which consists of a'-C2S, C3M82, CaO.MnO-2SiOu and C2AS. Experimental results show that the Mn slag has potential hydraulic reactivity. Concrete made with Mn slag as supplementary cementitious materials (SCMs) exhibits very low strength loss and weight loss in the synthetic seawater corrosion and freezing-thawing cycle tests. The research provides useful reference for knowing about Mn slag and for applying Mn slag to improve the durability of concrete.
文摘The high repetition rate 10 J/10 ns Yb:YAG laser system and its key techniques are reported.The amplifiers in this system have a multi-pass V-shape structure and the heat in the amplifiers is removed by means of laminar water flow.In the main amplifier,the laser is four-pass,and an approximately 8.5 J/1 Hz/10 ns output is achieved in the primary test.The far-field of the output beam is approximately 10 times the diffraction limit.Because of the higher levels of amplified spontaneous emission(ASE) in the main amplifier,the output energy is lower than expected.At the end we discuss some measures that can improve the properties of the laser system.
基金Supported by Guangdong Provincial Science and Technology FundGuangdong Provincial Scientifi c Project Grant
文摘AIM: To discuss the safety, feasibility and regularity of destruction to porcine spleen in vivo with congestion and tumescence by microwave ablation (MWA). METHODS: Ligation of the splenic vein was used to induce congestion and tumescence in vivo in five porcine spleens, and microwave ablation was performed 2-4 h later. A total of 56 ablation points were ablated and the ablation powers were 30-100 W. The ablation time (1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 min) was performed at a power of 60 W. After ablation, the ablation size was measured in pigs A, C, D and E and spleen resection. In pig B, the ablation size was measuredand 2 ablation points were sent for pathology analysis and all tissues were sutured following ablation. Pig B was killed 1 wk later and the ablation points were sent for pathology analysis. Bleeding, tissue carbonization surrounding electrodes, and pathological changes were observed, and the effect on destruction volume relative to different ablation powers, times and positions was analyzed. RESULTS: The incidence of bleeding (only small amounts, < 20 mL) in the course of ablation was 5.4% (3/56) and was attributed to tissue carbonization surrounding electrodes, which also exhibited an incidence of 5.4% (3/56). The destruction volume was influenced by different ablation powers, times and points. It showed that the ablation lesion size increased with increased ablation time, from 1 to 10 min, when the ablation power was 60 W. Also, the ablation lesion size increased with the increase of ablation power, ranging from 30 to 100 W when the ablation time was set to 3 min. A direct correlation was seen between the destruction volume and ablation time by the power of 60 W (r = 0.97542, P < 0.0001, and also between the destruction volume and ablation powers at an ablation time of 3 min (r = 0.98258, P < 0.0001). The destruction volume of zone Ⅱ (the extra-2/3 part of the spleen, relative to the fi rst or second class vascular branches), which was near the hilum of the spleen, was noteably larger than the d
基金supported by "High-end CNC machine tools and basic manufacturing equipment" Major Science and Technology Project of China(No.2009ZX04014-081)Post-Doctor Project of China (No.20080431162)Young Expert Science Foundation of Harbin University of Science and Technology(No.2008XQJZ005)
文摘Formation of macrosegregation of 5 t steel ingots cast in sand molds with and without water-cooled copper tube is simulated by solving macroscopic mass, momentum, species and energy conservation equations with the consideration of shrinkage formation. Predicted macrosegregation pattern of the ingots shows a fair agreement with the experimental data. Both calculations and experiments reveal that some positive segregation patches are formed at the bottom of ingot. With the water-cooled copper tube inserted in the sand mold, the ingot cast has a less intensive macrosegregation. Mechanisms of macrosegregation formation are numerically analyzed. Explanations regarding the influences of fluid flow and temperature change upon the segregation formation are provided.