Coking wastewater has caused serious health risk in coal-producing areas of China, however its toxic effects have not been well understood. The genotoxicity induced by coking wastewater on mice in vivo and its possibl...Coking wastewater has caused serious health risk in coal-producing areas of China, however its toxic effects have not been well understood. The genotoxicity induced by coking wastewater on mice in vivo and its possible oxidative mechanisms were investigated via observing the induction of micronuclei in polychromatic erythrocytes of mouse bone marrow, and subsequently determining the antioxidative enzyme activities (superoxide dismutase Cu, Zn-SOD, Se-dependent glutathione peroxidase, and catalase), thiobarbituric acid reactive substance contents and protein carbonyl levels in brains and livers of mice. Results showed that the tested coking wastewater caused a significant increase of micronucleus frequencies in a concentration-dependent manner. Also, the sample increased lipid peroxidation and protein oxidation levels, which was accompanied by changes in antioxidative status. Interestingly, pre-treatment with an antioxidant (vitamin C) led to a statistical reduction in the micronucleus frequency caused by coking wastewater. This implies that coking wastewater induces evident genetic damage in mammalian cells, and exposure to polluted areas might pose a potential genotoxic risk to human beings; in the process, oxidative stress played a crucial role.展开更多
A field experiment was conducted in order to quantify the effect of domestic wastewater on the growth of poplar plantation and research the purification function of poplar trees for wastewater in Longhu Town of Zhengz...A field experiment was conducted in order to quantify the effect of domestic wastewater on the growth of poplar plantation and research the purification function of poplar trees for wastewater in Longhu Town of Zhengzhou during 2008 and 2009.Different hydraulic loading(0,3,6,9,12,15 cm·week-1) were applied to the experimental plots.A series of indicators(growth of poplar plantation,leaf litter dry weight,one-year-old branch,leaf length,leaf fluctuating asymmetry;nitrogen,phosphorus and sodium contents of branch and leaf) were measured.The results showed that wastewater land treatment resulted in increasing the growth of poplar plantation and nitrogen,phosphorus,sodium contents of branch and leaf.Poplars can take up pollutants in wastewater.However,the chemicals in domestic wastewater caused poplar trees damage due to high NaCl.Leaf length appeared to be a useful stress diagnostic tool for use in situ.展开更多
This study aims to demonstrate the validity of fluorescence-based methods,together with flow cytometry,as a complementary tool to conventional physicochemical analyses carried out in wastewater treatment plants(WWTPs)...This study aims to demonstrate the validity of fluorescence-based methods,together with flow cytometry,as a complementary tool to conventional physicochemical analyses carried out in wastewater treatment plants(WWTPs),for the control of the currently largely unknown activated sludge process.Staining with SYTO 9,propidium iodide and 5-(and 6)-carboxy-2’,7’-difluorodihydrofluorescein diacetate(carboxy-H2 DFFDA)was used for cell viability and oxidative stress monitoring of the bacterial population forming the activated sludge of a WWTP.Throughout the period of research,several unstable periods were detected,where the non-viable bacteria exceeded the 75%of the total bacterial population in the activated sludge,but only in one case the cells with oxidative stress grew to 9%,exceeding the typical values of2%-5%of this plant.These periods coincided in two cases with high values of total suspended solids(SST)and chemical oxygen demand(COD)in the effluent,and with an excess of ammonia in other case.A correlation between flow cytometric and physicochemical data was found,which enabled to clarify the possible origin of each case of instability in the biological system.This experience supports the application of bacterial fluorescence staining,together with flow cytometric analysis,as a simple,rapid and reliable tool for the control and better understanding of the bacteria dynamics in a biological wastewater treatment process.展开更多
基金supported by the National Natural Science Foundation of China (No.20977060)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20121401110003)+3 种基金the Project for Science and Technology Development of Shanxi Province(No.20120313009-2)the Natural Science Foundation of Shanxi Province(No.2012021008-1)the Research Project Supported by Shanxi Scholarship Council of China(No.2011-013,2012-009)the Program for the Top Young and Middle aged Innovative Talents of Higher Learning Institutions of Shanxi
文摘Coking wastewater has caused serious health risk in coal-producing areas of China, however its toxic effects have not been well understood. The genotoxicity induced by coking wastewater on mice in vivo and its possible oxidative mechanisms were investigated via observing the induction of micronuclei in polychromatic erythrocytes of mouse bone marrow, and subsequently determining the antioxidative enzyme activities (superoxide dismutase Cu, Zn-SOD, Se-dependent glutathione peroxidase, and catalase), thiobarbituric acid reactive substance contents and protein carbonyl levels in brains and livers of mice. Results showed that the tested coking wastewater caused a significant increase of micronucleus frequencies in a concentration-dependent manner. Also, the sample increased lipid peroxidation and protein oxidation levels, which was accompanied by changes in antioxidative status. Interestingly, pre-treatment with an antioxidant (vitamin C) led to a statistical reduction in the micronucleus frequency caused by coking wastewater. This implies that coking wastewater induces evident genetic damage in mammalian cells, and exposure to polluted areas might pose a potential genotoxic risk to human beings; in the process, oxidative stress played a crucial role.
文摘A field experiment was conducted in order to quantify the effect of domestic wastewater on the growth of poplar plantation and research the purification function of poplar trees for wastewater in Longhu Town of Zhengzhou during 2008 and 2009.Different hydraulic loading(0,3,6,9,12,15 cm·week-1) were applied to the experimental plots.A series of indicators(growth of poplar plantation,leaf litter dry weight,one-year-old branch,leaf length,leaf fluctuating asymmetry;nitrogen,phosphorus and sodium contents of branch and leaf) were measured.The results showed that wastewater land treatment resulted in increasing the growth of poplar plantation and nitrogen,phosphorus,sodium contents of branch and leaf.Poplars can take up pollutants in wastewater.However,the chemicals in domestic wastewater caused poplar trees damage due to high NaCl.Leaf length appeared to be a useful stress diagnostic tool for use in situ.
基金supported by the Bilbao Bizkaia Water Consortium
文摘This study aims to demonstrate the validity of fluorescence-based methods,together with flow cytometry,as a complementary tool to conventional physicochemical analyses carried out in wastewater treatment plants(WWTPs),for the control of the currently largely unknown activated sludge process.Staining with SYTO 9,propidium iodide and 5-(and 6)-carboxy-2’,7’-difluorodihydrofluorescein diacetate(carboxy-H2 DFFDA)was used for cell viability and oxidative stress monitoring of the bacterial population forming the activated sludge of a WWTP.Throughout the period of research,several unstable periods were detected,where the non-viable bacteria exceeded the 75%of the total bacterial population in the activated sludge,but only in one case the cells with oxidative stress grew to 9%,exceeding the typical values of2%-5%of this plant.These periods coincided in two cases with high values of total suspended solids(SST)and chemical oxygen demand(COD)in the effluent,and with an excess of ammonia in other case.A correlation between flow cytometric and physicochemical data was found,which enabled to clarify the possible origin of each case of instability in the biological system.This experience supports the application of bacterial fluorescence staining,together with flow cytometric analysis,as a simple,rapid and reliable tool for the control and better understanding of the bacteria dynamics in a biological wastewater treatment process.