Organic amendments such as vermicompost and biochar have been reported to enhance soil fertility and crop productivity.However, whether the co-application of both amendments has synergistic effects or whether such ben...Organic amendments such as vermicompost and biochar have been reported to enhance soil fertility and crop productivity.However, whether the co-application of both amendments has synergistic effects or whether such benefits are accompanied by the risk of gaseous nitrogen(N) loss in an agroecosystem remains unknown. A soil column experiment with a fully factorial design was conducted using three levels of vermicompost(no dose, low dose(1%, weight:weight), and high dose(3%, weight:weight)) without or with biochar(1%, weight:weight) to investigate their effects on rice growth and gaseous N loss across the crop growing season. Our results demonstrated that synergistic interactions existed between vermicompost and biochar in promoting crop yield. Compared with biochar amendment alone, biochar combined with vermicompost significantly(P < 0.01) increased rice yield by 26.5%–35.3%. However,high dose of vermicompost significantly(P < 0.01) increased the cumulative ammonia(NH_3) and nitrous oxide(N_2O) emissions. In the presence of vermicompost, the incorporation of biochar amendment significantly(P < 0.01) decreased the cumulative N_2O emission by 14.1%–18.6%. The lowest emission factor value of NH_3 and N_2O was achieved using biochar in combination with low dose of vermicompost. This study revealed that the combination of biochar and moderate dose of vermicompost offers a novel approach to promote crop productivity while reducing the environmental risk.展开更多
养殖肥水农田施用是一种有效的绿色循环模式,肥水施用会影响土壤氨挥发,而土壤氨挥发受肥水含氮量、温度、土壤含水量和pH等多种因素共同影响。本研究采用室内培养的方法,研究肥水施氮量、温度、pH和土壤含水量四个因素对土壤氨挥发的影...养殖肥水农田施用是一种有效的绿色循环模式,肥水施用会影响土壤氨挥发,而土壤氨挥发受肥水含氮量、温度、土壤含水量和pH等多种因素共同影响。本研究采用室内培养的方法,研究肥水施氮量、温度、pH和土壤含水量四个因素对土壤氨挥发的影响,筛选实验条件下适宜的养殖肥水施用条件。结果表明,四个因素对土壤氨挥发累积量的影响大小依次为:施氮量>温度>pH>土壤含水量,其中,土壤氨挥发与施氮量、温度、pH均呈显著正相关关系,氨挥发累积量随着施氮量、温度、pH的升高而升高。在温度15~35℃、土壤含水量60%~80%、pH 6~8、施氮量60~120 kg N·hm-2的范围内,降低土壤氨挥发的理想条件为:施氮量75.58kg N·hm-2,温度15.48℃,pH 6.22,土壤含水量为田间持水量的60.63%。考虑实际情况,温度25℃时,降低土壤氨挥发的肥水施用条件为:施氮量64.98 kg N·hm-2,pH 6.02,土壤含水量为田间持水量的73.42%。研究多因素耦合对土壤氨挥发的影响,能够提高氮素利用率,为养殖肥水安全回用提供了科学方法和理论依据。展开更多
Reducing ammonia(NH3) and nitrous oxide(N2O) emissions have great effects on mitigating nitrogen(N) nutrient loss and greenhouse gas emissions. Controlled release urea(CRU) can control the N release rate, which reduce...Reducing ammonia(NH3) and nitrous oxide(N2O) emissions have great effects on mitigating nitrogen(N) nutrient loss and greenhouse gas emissions. Controlled release urea(CRU) can control the N release rate, which reduces reactive N loss and increases nitrogen use efficiency relative to conventional urea(CU). However, the crucial factors influencing the responses of NH3and N2O emissions to CRU relative to CU are still unclear. In this study, we evaluated the responses of NH3and N2O emissions to CRU based on collected field data with a meta-analysis. CRU reduced the NH3and N2O emissions by 32.7 and 25.0% compared with CU, respectively. According to subgroup analysis, CRU presented better mitigation of NH3and N2O emissions in soils with pH 6.5–7.5(–47.9 and –23.7%) relative to either pH<6.5(–28.5and –21.4%) or pH>7.5(–29.3 and –17.3%), and in the rice season(–34.8 and –29.1%) relative to the wheat season(–19.8 and –22.8%). The responses of NH3and N2O emissions to CRU increased from rainfed(–30.5 and –17.0%) to irrigated(–32.5 and –22.9%), and then to paddy(–34.8 and –29.1%) systems. In addition, the response of N2O emission mitigation increased with increases in soil total nitrogen(TN);however, soil TN did not significantly affect the response of NH3volatilization. The reduction in NH3emission was greater in sandy-textured soil(–57.7%) relative to loam-textured(–32.9%) and clay-textured(–32.3%) soils, whereas soil texture did not affect N2O emission. Overall, CRU was a good option for reducing the NH3and N2O emissions relative to CU in agricultural production. This analysis improves our understanding of the crucial environmental and management factors influencing the mitigation of NH3and N2O emissions under CRU application, and these site-specific factors should be considered when applying CRU to reduce reactive N loss and increase NUE.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41601323 and 41401345)the Open Foundation of the State Key Laboratory of Soil and Sustainable Agriculture of China (No. Y20160033)+1 种基金the National Key Research and Development Program of China (No. 2016YFD0801101)the China Postdoctoral Science Foundation (No. 2015M581753)
文摘Organic amendments such as vermicompost and biochar have been reported to enhance soil fertility and crop productivity.However, whether the co-application of both amendments has synergistic effects or whether such benefits are accompanied by the risk of gaseous nitrogen(N) loss in an agroecosystem remains unknown. A soil column experiment with a fully factorial design was conducted using three levels of vermicompost(no dose, low dose(1%, weight:weight), and high dose(3%, weight:weight)) without or with biochar(1%, weight:weight) to investigate their effects on rice growth and gaseous N loss across the crop growing season. Our results demonstrated that synergistic interactions existed between vermicompost and biochar in promoting crop yield. Compared with biochar amendment alone, biochar combined with vermicompost significantly(P < 0.01) increased rice yield by 26.5%–35.3%. However,high dose of vermicompost significantly(P < 0.01) increased the cumulative ammonia(NH_3) and nitrous oxide(N_2O) emissions. In the presence of vermicompost, the incorporation of biochar amendment significantly(P < 0.01) decreased the cumulative N_2O emission by 14.1%–18.6%. The lowest emission factor value of NH_3 and N_2O was achieved using biochar in combination with low dose of vermicompost. This study revealed that the combination of biochar and moderate dose of vermicompost offers a novel approach to promote crop productivity while reducing the environmental risk.
文摘养殖肥水农田施用是一种有效的绿色循环模式,肥水施用会影响土壤氨挥发,而土壤氨挥发受肥水含氮量、温度、土壤含水量和pH等多种因素共同影响。本研究采用室内培养的方法,研究肥水施氮量、温度、pH和土壤含水量四个因素对土壤氨挥发的影响,筛选实验条件下适宜的养殖肥水施用条件。结果表明,四个因素对土壤氨挥发累积量的影响大小依次为:施氮量>温度>pH>土壤含水量,其中,土壤氨挥发与施氮量、温度、pH均呈显著正相关关系,氨挥发累积量随着施氮量、温度、pH的升高而升高。在温度15~35℃、土壤含水量60%~80%、pH 6~8、施氮量60~120 kg N·hm-2的范围内,降低土壤氨挥发的理想条件为:施氮量75.58kg N·hm-2,温度15.48℃,pH 6.22,土壤含水量为田间持水量的60.63%。考虑实际情况,温度25℃时,降低土壤氨挥发的肥水施用条件为:施氮量64.98 kg N·hm-2,pH 6.02,土壤含水量为田间持水量的73.42%。研究多因素耦合对土壤氨挥发的影响,能够提高氮素利用率,为养殖肥水安全回用提供了科学方法和理论依据。
基金financially supported by the Smart Fertilization Project (05)the National Key Research & Development Program of China (2022YFD1700605)。
文摘Reducing ammonia(NH3) and nitrous oxide(N2O) emissions have great effects on mitigating nitrogen(N) nutrient loss and greenhouse gas emissions. Controlled release urea(CRU) can control the N release rate, which reduces reactive N loss and increases nitrogen use efficiency relative to conventional urea(CU). However, the crucial factors influencing the responses of NH3and N2O emissions to CRU relative to CU are still unclear. In this study, we evaluated the responses of NH3and N2O emissions to CRU based on collected field data with a meta-analysis. CRU reduced the NH3and N2O emissions by 32.7 and 25.0% compared with CU, respectively. According to subgroup analysis, CRU presented better mitigation of NH3and N2O emissions in soils with pH 6.5–7.5(–47.9 and –23.7%) relative to either pH<6.5(–28.5and –21.4%) or pH>7.5(–29.3 and –17.3%), and in the rice season(–34.8 and –29.1%) relative to the wheat season(–19.8 and –22.8%). The responses of NH3and N2O emissions to CRU increased from rainfed(–30.5 and –17.0%) to irrigated(–32.5 and –22.9%), and then to paddy(–34.8 and –29.1%) systems. In addition, the response of N2O emission mitigation increased with increases in soil total nitrogen(TN);however, soil TN did not significantly affect the response of NH3volatilization. The reduction in NH3emission was greater in sandy-textured soil(–57.7%) relative to loam-textured(–32.9%) and clay-textured(–32.3%) soils, whereas soil texture did not affect N2O emission. Overall, CRU was a good option for reducing the NH3and N2O emissions relative to CU in agricultural production. This analysis improves our understanding of the crucial environmental and management factors influencing the mitigation of NH3and N2O emissions under CRU application, and these site-specific factors should be considered when applying CRU to reduce reactive N loss and increase NUE.