We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subs...We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subsequent reorganization of extracellular matrix assembly correlates to the restoration of impaired vestibular function. The tenascin-R has repelling effect on pathfinding during axonal growth/regrowth, and thus inhibits neural circuit repair. By using immunohistochemical method, we studied the modification of tenascin-R expression in the superior, medial, lateral, and descending vestibular nuclei of the rat following unilateral labyrin- thectomy. On postoperative day 1, tenascin-R reaction in the perineuronal nets disappeared on the side of labyrinthectomy in the superior, lateral, medial, and rostral part of the descending vestibular nuclei. On survival day 3, the staining intensity of tenascin-R reaction in perineuronal nets recovered on the operated side of the medial vestibular nucleus, whereas it was restored by the time of postoperative day 7 in the superior, lateral and rostral part of the descending vestib- ular nuclei. The staining intensity of tenascin-R reaction remained unchanged in the caudal part of the descending vestibular nucleus bilaterally. Regional differences in the modification of tena- scin-R expression presented here may be associated with different roles of individual vestibular nuclei in the compensatory processes. The decreased expression of the tenascin-R may suggest the extracellular facilitation of plastic modifications in the vestibular neural circuit after lesion of the labyrinthine receptors.展开更多
To gain insights into the ototoxic effects of aminoglycoside antibiotics(AmAn) and delayed peripheral ganglion neuron death in the inner ear.experimental animal models were widely used with several different approache...To gain insights into the ototoxic effects of aminoglycoside antibiotics(AmAn) and delayed peripheral ganglion neuron death in the inner ear.experimental animal models were widely used with several different approaches including AmAn systemic injections,combination treatment of AmAn and diuretics,or local application of AmAn.In these approaches,systemic AmAn treatment alone usually causes incomplete damage to hair cells in the inner ear.Co-administration of diuretic and AmAn can completely destroy the cochlear hair cells,but it is impossible to damage the vestibular system.Only the approach of AmAn local application can selectively eliminate most sensory hair cells in the inner ear.Therefore,AmAn local application is more suitable for studies for complete hair cell destructions in cochlear and vestibular system and the following delayed peripheral ganglion neuron death.In current studies,guinea pigs were unilaterally treated with a high concentration of gentamicin(GM,40 nig/ml) through the tympanic membrane into the middle ear cavity.Auditory functions and vestibular functions were measured before and after GM treatment.The loss of hair cells and delayed degeneration of ganglion neurons in both cochlear and vestibular system were quantified 30 days or 60 days after treatment.The results showed that both auditory and vestibular functions were completely abolished after GM treatment.The sensory hair cells were totally missing in the cochlea,and severely destroyed in vestibular end-organs.The delayed spiral ganglion neuron death 60 days after the deafening procedure was over 50%.However,no obvious pathological changes were observed in vestibular ganglion neurons 60 days post-treatment.These results indicated that a high concentration of gentamycin delivered to the middle ear cavity can destroy most sensory hair cells in the inner ear that subsequently causes the delayed spiral ganglion neuron degeneration.This model might be useful for studies of hair cell regenerations,delayed degeneration of peripheral auditory ne展开更多
Given the interdependence of multiple factors in age-related vestibular loss (e.g., balance, vision,cognition), it is important to examine the individual contributions of these factors with ARVL. While therelationship...Given the interdependence of multiple factors in age-related vestibular loss (e.g., balance, vision,cognition), it is important to examine the individual contributions of these factors with ARVL. While therelationship between the vestibular and visual systems has been well studied (Bronstein et al., 2015),little is known about the association of the peripheral vestibular system with neurodegenerative disorders (Cronin et al., 2017). Further, emerging research developments implicate the vestibular system asan opportunity for examining brain function beyond balance, and into other areas, such as cognition andpsychological functioning. Additionally, the bidirectional impact of psychological functioning is understudied in ARVL. Recognition of ARVL as part of a multifaceted aging process will help guide thedevelopment of integrated interventions for patients who remain at risk for decline. In this review, wewill discuss a wide variety of characteristics of the peripheral vestibular system and ARVL, how it relatesto neurodegenerative diseases, and correlations between ARVL and balance, vision, cognitive, and psychological dysfunction. We also discuss clinical implications as well as future directions for research, withan emphasis on improving care for patients with ARVL.展开更多
This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized fo...This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized for steady-state and oscillatory water flow monitoring applications.The results demonstrated a high sensitivity(103.91 mV(mm/s)-1) and a very low-velocity detection threshold(1.127 mm s-1) in steady-state flow monitoring.As one of many potential applications,we demonstrated that the proposed VGNs/PDMS flow sensor can closely mimic the vestibular hair cell sensors housed inside the semicircular canals(SCCs).As a proof of concept,magnetic resonance imaging of the human inner ear was conducted to measure the dimensions of the SCCs and to develop a 3D printed lateral semicircular canal(LSCC).The sensor was embedded into the artificial LSCC and tested for various physiological movements.The obtained results indicate that the flow sensor is able to distinguish minute changes in the rotational axis physical geometry,frequency,and amplitude.The success of this study paves the way for extending this technology not only to vestibular organ prosthesis but also to other applications such as blood/urine flow monitoring,intravenous therapy(Ⅳ),water leakage monitoring,and unmanned underwater robots through incorporation of the appropriate packaging of devices.展开更多
基金supported by a grant from the Hungarian Academy of Sciences(MTA-TKI 11008)a grant from the European Union and the State of Hungarythe European Social Fund in the framework of TáMOP-4.2.4.A/2-11/1-2012-0001‘National Excellence Program’
文摘We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subsequent reorganization of extracellular matrix assembly correlates to the restoration of impaired vestibular function. The tenascin-R has repelling effect on pathfinding during axonal growth/regrowth, and thus inhibits neural circuit repair. By using immunohistochemical method, we studied the modification of tenascin-R expression in the superior, medial, lateral, and descending vestibular nuclei of the rat following unilateral labyrin- thectomy. On postoperative day 1, tenascin-R reaction in the perineuronal nets disappeared on the side of labyrinthectomy in the superior, lateral, medial, and rostral part of the descending vestibular nuclei. On survival day 3, the staining intensity of tenascin-R reaction in perineuronal nets recovered on the operated side of the medial vestibular nucleus, whereas it was restored by the time of postoperative day 7 in the superior, lateral and rostral part of the descending vestib- ular nuclei. The staining intensity of tenascin-R reaction remained unchanged in the caudal part of the descending vestibular nucleus bilaterally. Regional differences in the modification of tena- scin-R expression presented here may be associated with different roles of individual vestibular nuclei in the compensatory processes. The decreased expression of the tenascin-R may suggest the extracellular facilitation of plastic modifications in the vestibular neural circuit after lesion of the labyrinthine receptors.
基金supported by the National Nature Science Foundation of China(No.81170912)the Major State Basic Research Development Program of China(973 Program,No.2014CB943003)
文摘To gain insights into the ototoxic effects of aminoglycoside antibiotics(AmAn) and delayed peripheral ganglion neuron death in the inner ear.experimental animal models were widely used with several different approaches including AmAn systemic injections,combination treatment of AmAn and diuretics,or local application of AmAn.In these approaches,systemic AmAn treatment alone usually causes incomplete damage to hair cells in the inner ear.Co-administration of diuretic and AmAn can completely destroy the cochlear hair cells,but it is impossible to damage the vestibular system.Only the approach of AmAn local application can selectively eliminate most sensory hair cells in the inner ear.Therefore,AmAn local application is more suitable for studies for complete hair cell destructions in cochlear and vestibular system and the following delayed peripheral ganglion neuron death.In current studies,guinea pigs were unilaterally treated with a high concentration of gentamicin(GM,40 nig/ml) through the tympanic membrane into the middle ear cavity.Auditory functions and vestibular functions were measured before and after GM treatment.The loss of hair cells and delayed degeneration of ganglion neurons in both cochlear and vestibular system were quantified 30 days or 60 days after treatment.The results showed that both auditory and vestibular functions were completely abolished after GM treatment.The sensory hair cells were totally missing in the cochlea,and severely destroyed in vestibular end-organs.The delayed spiral ganglion neuron death 60 days after the deafening procedure was over 50%.However,no obvious pathological changes were observed in vestibular ganglion neurons 60 days post-treatment.These results indicated that a high concentration of gentamycin delivered to the middle ear cavity can destroy most sensory hair cells in the inner ear that subsequently causes the delayed spiral ganglion neuron degeneration.This model might be useful for studies of hair cell regenerations,delayed degeneration of peripheral auditory ne
文摘Given the interdependence of multiple factors in age-related vestibular loss (e.g., balance, vision,cognition), it is important to examine the individual contributions of these factors with ARVL. While therelationship between the vestibular and visual systems has been well studied (Bronstein et al., 2015),little is known about the association of the peripheral vestibular system with neurodegenerative disorders (Cronin et al., 2017). Further, emerging research developments implicate the vestibular system asan opportunity for examining brain function beyond balance, and into other areas, such as cognition andpsychological functioning. Additionally, the bidirectional impact of psychological functioning is understudied in ARVL. Recognition of ARVL as part of a multifaceted aging process will help guide thedevelopment of integrated interventions for patients who remain at risk for decline. In this review, wewill discuss a wide variety of characteristics of the peripheral vestibular system and ARVL, how it relatesto neurodegenerative diseases, and correlations between ARVL and balance, vision, cognitive, and psychological dysfunction. We also discuss clinical implications as well as future directions for research, withan emphasis on improving care for patients with ARVL.
基金financial support from Australian Research Council(ARC)via Discovery Early Career Researcher Awards(DE180100688 and DE170100284).
文摘This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized for steady-state and oscillatory water flow monitoring applications.The results demonstrated a high sensitivity(103.91 mV(mm/s)-1) and a very low-velocity detection threshold(1.127 mm s-1) in steady-state flow monitoring.As one of many potential applications,we demonstrated that the proposed VGNs/PDMS flow sensor can closely mimic the vestibular hair cell sensors housed inside the semicircular canals(SCCs).As a proof of concept,magnetic resonance imaging of the human inner ear was conducted to measure the dimensions of the SCCs and to develop a 3D printed lateral semicircular canal(LSCC).The sensor was embedded into the artificial LSCC and tested for various physiological movements.The obtained results indicate that the flow sensor is able to distinguish minute changes in the rotational axis physical geometry,frequency,and amplitude.The success of this study paves the way for extending this technology not only to vestibular organ prosthesis but also to other applications such as blood/urine flow monitoring,intravenous therapy(Ⅳ),water leakage monitoring,and unmanned underwater robots through incorporation of the appropriate packaging of devices.