Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. Thi...Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. This paper develops an Improved Artificial Bee Colony(IABC) algorithm for the SCC scheduling. In the proposed IABC, charge permutation is employed to represent the solutions. In the population initialization, several solutions with certain quality are produced by a heuristic while others are generated randomly. Two variable neighborhood search neighborhood operators are devised to generate new high-quality solutions for the employed bee and onlooker bee phases, respectively. Meanwhile, in order to enhance the exploitation ability, a control parameter is introduced to conduct the search of onlooker bee phase. Moreover, to enhance the exploration ability,the new generated solutions are accepted with a control acceptance criterion. In the scout bee phase, the solution corresponding to a scout bee is updated by performing three swap operators and three insert operators with equal probability. Computational comparisons against several recent algorithms and a state-of-the-art SCC scheduling algorithm have demonstrated the strength and superiority of the IABC.展开更多
Before the dispatch of the carrier-based aircraft,a series of pre-flight preparation operations need to be completed on the flight deck.Flight deck fixed aviation support resource station configuration has an importan...Before the dispatch of the carrier-based aircraft,a series of pre-flight preparation operations need to be completed on the flight deck.Flight deck fixed aviation support resource station configuration has an important impact on operation efficiency and sortie rate.However,the resource station configuration is determined during the aircraft carrier design phase and is rarely modified as required,which may not be suitable for some pre-flight preparation missions.In order to solve the above defects,the joint optimization of flight deck resource station configuration and aircraft carrier pre-flight preparation scheduling is studied in this paper,which is formulated as a two-tier optimization decision-making framework.An improved variable neighborhood search algorithm with four original neighborhood structures is presented.Dispatch mission experiment and algorithm performance comparison experiment are carried out in the computational experiment section.The correlation between the pre-flight preparation time(makespan)and flight deck cabin occupancy percentage is given,and advantages of the proposed algorithm in solving the mathematical model are verified.展开更多
Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as dev...Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.展开更多
With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the rou...With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.展开更多
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
模糊车间调度问题是复杂调度的经典体现,针对此问题设计优秀的调度方案能提高生产效率。目前对于模糊车间调度问题的研究主要集中在单目标上,因此提出一种改进的灰狼优化算法(improved grey wolf optimization,IGWO)求解以最小化模糊完...模糊车间调度问题是复杂调度的经典体现,针对此问题设计优秀的调度方案能提高生产效率。目前对于模糊车间调度问题的研究主要集中在单目标上,因此提出一种改进的灰狼优化算法(improved grey wolf optimization,IGWO)求解以最小化模糊完成时间和最小化模糊机器总负载的双目标模糊柔性作业车间调度问题。该算法首先采用双层编码将IGWO离散化,设计一种基于HV贡献度的策略提高种群多样性;然后使用强化学习方法确定全局和局部的搜索参数,改进两种交叉算子协助个体在不同更新模式下的进化;接着使用两级变邻域和四种替换策略提高局部搜索能力;最后在多个测例上进行多组实验分析验证改进策略的有效性。在多数测例上,IGWO的性能要优于对比算法,具有良好的收敛性和分布性。展开更多
Two-echelon routing problems,including variants such as the two-echelon vehicle routing problem(2E-VRP)and the two-echelon location routing problem(2E-LRP),involve assignment and location decisions.However,the two-ech...Two-echelon routing problems,including variants such as the two-echelon vehicle routing problem(2E-VRP)and the two-echelon location routing problem(2E-LRP),involve assignment and location decisions.However,the two-echelon time-constrained vehicle routing problem(2E-TVRP)that caters to from-linehaul-to-delivery practices does not involve assignment decisions.This routing problem variant for networks with two eche-lons has not yet attracted enough research interest.Localized or long-distance services suffer from the lack of the assignment decisions between satellites and customers.Therefore,the 2E-TVRP,rather than using assignment decisions,adopts time constraints to decide the routes on each of the two interacting echelons:large-capacity vehicles trans-port cargoes among satellites on the first echelon,and small-capacity vehicles deliver cargoes from satellites to customers on the second echelon.This study introduces a mixed integer linear programming model for the 2E-TVRP and proposes a heuristic algorithm that incorporates the savings algorithm followed by a variable neighborhood search phase.Illustrative examples are used to test the mathematical formulation and the heuristic and a case study is used to demonstrate that the heuristic can effectively solve realistic-size instances of the 2E-TVRP.展开更多
Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the phys...Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the physical attendance ofthe populations of students, professors, employees, and other members on campus. This research proposes an automated scheduling approach that can help universities and schools comply with the social distancing regulations by providingassistance in avoiding huge assemblages of people. Furthermore, this paper proposes a novel course timetable-scheduling scheme based on four main constraints.First, a distance of two meters must be maintained between each student inside theclassroom. Second, no classrooms should contain more than 20% of their regularcapacity. Third, there would be no back-to-back classes. Lastly, no lectures shouldbe held simultaneously in adjacent classrooms. The proposed approach wasimplemented using a variable neighborhood search (VNS) approach with an adaptive neighborhood structure (AD-NS) to resolve the problem of scheduling coursetimetables at Al-Ahlyyia Amman University. However, the experimental resultsshow that the proposed techniques outperformed the standard VNS tested on university course timetabling benchmark dataset ITC2007-Track3. Meanwhile, theapproach was tested using datasets collected from the faculty of information technology at Al-Ahlyyia Amman University (Jordan). Where the results showed that,the proposed technique could help educational institutes to resume their regularoperations while complying with the social distancing guidelines.展开更多
In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction...In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient.展开更多
Rough set theory has been widely researched for time series prediction problems such as rainfall runoff.Accurate forecasting of rainfall runoff is a long standing but still mostly signicant problem for water resource ...Rough set theory has been widely researched for time series prediction problems such as rainfall runoff.Accurate forecasting of rainfall runoff is a long standing but still mostly signicant problem for water resource planning and management,reservoir and river regulation.Most research is focused on constructing the better model for improving prediction accuracy.In this paper,a rainfall runoff forecast model based on the variable-precision fuzzy neighborhood rough set(VPFNRS)is constructed to predict Watershed runoff value.Fuzzy neighborhood rough set dene the fuzzy decision of a sample by using the concept of fuzzy neighborhood.The fuzzy neighborhood rough set model with variable-precision can reduce the redundant attributes,and the essential equivalent data can improve the predictive capabilities of model.Meanwhile VFPFNRS can handle the numerical data,while it also deals well with the noise data.In the discussed approach,VPFNRS is used to reduce superuous attributes of the original data,the compact data are employed for predicting the rainfall runoff.The proposed method is examined utilizing data in the Luo River Basin located in Guangdong,China.The prediction accuracy is compared with that of support vector machines and long shortterm memory(LSTM).The experiments show that the method put forward achieves a higher predictive performance.展开更多
基金Supported by the National Natural Science Foundation of China(51705177,51575212)the Program for New Century Excellent Talents in University(NCET-13-0106)the Program for HUST Academic Frontier Youth Team
文摘Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. This paper develops an Improved Artificial Bee Colony(IABC) algorithm for the SCC scheduling. In the proposed IABC, charge permutation is employed to represent the solutions. In the population initialization, several solutions with certain quality are produced by a heuristic while others are generated randomly. Two variable neighborhood search neighborhood operators are devised to generate new high-quality solutions for the employed bee and onlooker bee phases, respectively. Meanwhile, in order to enhance the exploitation ability, a control parameter is introduced to conduct the search of onlooker bee phase. Moreover, to enhance the exploration ability,the new generated solutions are accepted with a control acceptance criterion. In the scout bee phase, the solution corresponding to a scout bee is updated by performing three swap operators and three insert operators with equal probability. Computational comparisons against several recent algorithms and a state-of-the-art SCC scheduling algorithm have demonstrated the strength and superiority of the IABC.
文摘Before the dispatch of the carrier-based aircraft,a series of pre-flight preparation operations need to be completed on the flight deck.Flight deck fixed aviation support resource station configuration has an important impact on operation efficiency and sortie rate.However,the resource station configuration is determined during the aircraft carrier design phase and is rarely modified as required,which may not be suitable for some pre-flight preparation missions.In order to solve the above defects,the joint optimization of flight deck resource station configuration and aircraft carrier pre-flight preparation scheduling is studied in this paper,which is formulated as a two-tier optimization decision-making framework.An improved variable neighborhood search algorithm with four original neighborhood structures is presented.Dispatch mission experiment and algorithm performance comparison experiment are carried out in the computational experiment section.The correlation between the pre-flight preparation time(makespan)and flight deck cabin occupancy percentage is given,and advantages of the proposed algorithm in solving the mathematical model are verified.
文摘Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.
基金supported by the Natural Science Foundation of Zhejiang Province(LY19A020001).
文摘With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
文摘模糊车间调度问题是复杂调度的经典体现,针对此问题设计优秀的调度方案能提高生产效率。目前对于模糊车间调度问题的研究主要集中在单目标上,因此提出一种改进的灰狼优化算法(improved grey wolf optimization,IGWO)求解以最小化模糊完成时间和最小化模糊机器总负载的双目标模糊柔性作业车间调度问题。该算法首先采用双层编码将IGWO离散化,设计一种基于HV贡献度的策略提高种群多样性;然后使用强化学习方法确定全局和局部的搜索参数,改进两种交叉算子协助个体在不同更新模式下的进化;接着使用两级变邻域和四种替换策略提高局部搜索能力;最后在多个测例上进行多组实验分析验证改进策略的有效性。在多数测例上,IGWO的性能要优于对比算法,具有良好的收敛性和分布性。
基金This research work was supported by the Research Grant from the National Natural Science Foundation of China(grant number 71672005).
文摘Two-echelon routing problems,including variants such as the two-echelon vehicle routing problem(2E-VRP)and the two-echelon location routing problem(2E-LRP),involve assignment and location decisions.However,the two-echelon time-constrained vehicle routing problem(2E-TVRP)that caters to from-linehaul-to-delivery practices does not involve assignment decisions.This routing problem variant for networks with two eche-lons has not yet attracted enough research interest.Localized or long-distance services suffer from the lack of the assignment decisions between satellites and customers.Therefore,the 2E-TVRP,rather than using assignment decisions,adopts time constraints to decide the routes on each of the two interacting echelons:large-capacity vehicles trans-port cargoes among satellites on the first echelon,and small-capacity vehicles deliver cargoes from satellites to customers on the second echelon.This study introduces a mixed integer linear programming model for the 2E-TVRP and proposes a heuristic algorithm that incorporates the savings algorithm followed by a variable neighborhood search phase.Illustrative examples are used to test the mathematical formulation and the heuristic and a case study is used to demonstrate that the heuristic can effectively solve realistic-size instances of the 2E-TVRP.
文摘Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the physical attendance ofthe populations of students, professors, employees, and other members on campus. This research proposes an automated scheduling approach that can help universities and schools comply with the social distancing regulations by providingassistance in avoiding huge assemblages of people. Furthermore, this paper proposes a novel course timetable-scheduling scheme based on four main constraints.First, a distance of two meters must be maintained between each student inside theclassroom. Second, no classrooms should contain more than 20% of their regularcapacity. Third, there would be no back-to-back classes. Lastly, no lectures shouldbe held simultaneously in adjacent classrooms. The proposed approach wasimplemented using a variable neighborhood search (VNS) approach with an adaptive neighborhood structure (AD-NS) to resolve the problem of scheduling coursetimetables at Al-Ahlyyia Amman University. However, the experimental resultsshow that the proposed techniques outperformed the standard VNS tested on university course timetabling benchmark dataset ITC2007-Track3. Meanwhile, theapproach was tested using datasets collected from the faculty of information technology at Al-Ahlyyia Amman University (Jordan). Where the results showed that,the proposed technique could help educational institutes to resume their regularoperations while complying with the social distancing guidelines.
基金National Natural Science Foundation of China(No.61271114)The Key Programs of Science and Technology Research of He'nan Education Committee,China(No.12A520006)
文摘In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient.
基金supported by the National Natural Science Foundation of China(61672279)the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China(2016491411)。
文摘Rough set theory has been widely researched for time series prediction problems such as rainfall runoff.Accurate forecasting of rainfall runoff is a long standing but still mostly signicant problem for water resource planning and management,reservoir and river regulation.Most research is focused on constructing the better model for improving prediction accuracy.In this paper,a rainfall runoff forecast model based on the variable-precision fuzzy neighborhood rough set(VPFNRS)is constructed to predict Watershed runoff value.Fuzzy neighborhood rough set dene the fuzzy decision of a sample by using the concept of fuzzy neighborhood.The fuzzy neighborhood rough set model with variable-precision can reduce the redundant attributes,and the essential equivalent data can improve the predictive capabilities of model.Meanwhile VFPFNRS can handle the numerical data,while it also deals well with the noise data.In the discussed approach,VPFNRS is used to reduce superuous attributes of the original data,the compact data are employed for predicting the rainfall runoff.The proposed method is examined utilizing data in the Luo River Basin located in Guangdong,China.The prediction accuracy is compared with that of support vector machines and long shortterm memory(LSTM).The experiments show that the method put forward achieves a higher predictive performance.