Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical s...Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical simulations have been instrumental in revealing the correlations between the electronic structure of materials and their catalytic activity, and guide the prediction and development of improved catalysts. However, difficulties in accurately engineering the desired atomic sites lead to challenges in making direct comparisons between experi- mental and theoretical results. In MoS2, the Mo-edge has been demonstrated to be active for HER whereas the S-edge is inert. Using a computational descriptor- based approach, we predict that by incorporating transition metal atoms (Fe, Co, Ni, or Cu) the S-edge site should also become HER active. Vertically standing, edge-terminated MoS2 nanofilms provide a well-defined model system for verifying these predictions. The transition metal doped MoS2 nanofilms show an increase in exchange current densities by at least two-fold, in agreement with the theoretical calculations. This work opens up further opportunities for improving electrochemical catalysts by incorporating promoters into particular atomic sites, and for using well-defined systems in order to understand the origin of the promotion effects.展开更多
The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-...The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-layer MoSe2 nanosheets. By using Se and MoO3 as the chemical vapor supply, we demonstrate that highly crystalline MoSe2 can be directly grown on the 300 nm SiO2/Si substrates to form optically distinguishable single- and multi-layer nanosheets, typically in triangular shaped domains with edge lengths around 30 btm, which can merge into continuous thin films upon further growth. Micro-Raman spectroscopy and imaging was used to probe the thickness-dependent vibrational properties. Photoluminescence spectroscopy demonstrates that MoSe2 monolayers exhibit strong near band edge emission at 1.55 eV, while bilayers or multi-layers exhibit much weaker emission, indicating of the transition to a direct band gap semiconductor as the thickness is reduced to a monolayer.展开更多
We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition(CVD).Cont...We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition(CVD).Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can signifi cantly improve the thickness uniformity.As a result,one-or two-layer graphene regions occupy up to 87%of the fi lm area.Single layer coverage accounts for 5%11%of the overall fi lm.These regions expand across multiple grain boundaries of the underlying polycrystalline Ni fi lm.The number density of sites with multilayer graphene/graphite(>2 layers)is reduced as the cooling rate decreases.These fi lms can also be transferred to other substrates and their sizes are only limited by the sizes of the Ni fi lm and the CVD chamber.Here,we demonstrate the formation of fi lms as large as 1 in^(2).These fi ndings represent an important step towards the fabrication of large-scale high-quality graphene samples.展开更多
Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge and discharge result in pulverization of Si electrodes and fast ...Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge and discharge result in pulverization of Si electrodes and fast capacity loss on cycling. This drawback of Si electrodes can be overcome by combination with well-organized graphene foam. In this work, hierarchical three-dimensional carbon-coated mesoporous Si nanospheres@graphene foam (C@Si@GF) nanoarchitectures were successfully synthesized by a thermal bubble ejection assisted chemical-vapor-deposition and magnesiothermic reduction method. The morphology and structure of the as-prepared nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. When employed as anode materials in lithium ion batteries, C@Si@GF nanocomposites exhibited superior electrochemical per- formance including a high specific capacity of 1,200 mAh/g at the current density of 1A/g, excellent high rate capabilities and an outstanding cyclability. Post-mortem analyses identified that the morphology of 3D C@Si@GF electrodes after 200 cycles was well maintained. The synergistic effects arising from the combination of mesoporous Si nanospheres and graphene foam nanoarchitectures may address the intractable pulverization problem of Si electrode.展开更多
Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art disp...Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400-600 ℃. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.展开更多
Here we present an easy one-step approach to pattern uniform catalyst lines for the growth of dense,aligned parallel arrays of single-walled carbon nanotubes(SWNTs)on quartz wafers by using photolithography or polydim...Here we present an easy one-step approach to pattern uniform catalyst lines for the growth of dense,aligned parallel arrays of single-walled carbon nanotubes(SWNTs)on quartz wafers by using photolithography or polydimethylsiloxane(PDMS)stamp microcontact printing(μCP).By directly doping an FeCl3/methanol solution into Shipley 1827 photoresist or polyvinylpyrrolidone(PVP),various catalyst lines can be well-patterned on a wafer scale.In addition,during the chemical vapor deposition(CVD)growth of SWNTs the polymer layers play a very important role in the formation of mono-dispersed nanoparticles.This universal and effi cient method for the patterning growth of SWNTs arrays on a surface is compatible with the micro-electronics industry,thus enabling of the fabrication highly integrated circuits of SWNTs.展开更多
Plasma spray–physical vapor deposition(PS–PVD)is a unique technology that enables highly tailorable functional films and coatings with various rare metal elements to be processed.This technology bridges the gap betw...Plasma spray–physical vapor deposition(PS–PVD)is a unique technology that enables highly tailorable functional films and coatings with various rare metal elements to be processed.This technology bridges the gap between conventional thermal spray and vapor deposition and provides a variety of coating microstructures composed of vapor,liquid,and solid deposition units.The PS–PVD technique serves a broad range of applications in the fields of thermal barrier coatings(TBCs),environmental barrier coatings(EBCs),oxygen permeable films,and electrode films.It also represents the development direction of high-performance TBC/EBC preparation technologies.With the PS–PVD technique,the composition of the deposition unit determines the microstructure of the coating and its performance.When coating materials are injected into a nozzle and transported into the plasma jet,the deposition unit generated by a coating material is affected by the plasma jet characteristics.However,there is no direct in situ measurement method of material transfer and deposition processes in the PS–PVD plasma jet,because of the extreme conditions of PS–PVD such as a low operating pressure of*100 Pa,temperatures of thousands of degrees,and a thin and high-velocity jet.Despite the difficulties,the transport and transformation behaviors of the deposition units were also researched by optical emission spectroscopy,observation of the coating microstructure and other methods.This paper reviews the progress of PS–PVD technologies considering the preparation of advanced thermal barrier coatings from the perspective of the transport and transformation behaviors of the deposition units.The development prospects of new high-performance TBCs using the PS–PVD technique are also discussed.展开更多
文摘Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical simulations have been instrumental in revealing the correlations between the electronic structure of materials and their catalytic activity, and guide the prediction and development of improved catalysts. However, difficulties in accurately engineering the desired atomic sites lead to challenges in making direct comparisons between experi- mental and theoretical results. In MoS2, the Mo-edge has been demonstrated to be active for HER whereas the S-edge is inert. Using a computational descriptor- based approach, we predict that by incorporating transition metal atoms (Fe, Co, Ni, or Cu) the S-edge site should also become HER active. Vertically standing, edge-terminated MoS2 nanofilms provide a well-defined model system for verifying these predictions. The transition metal doped MoS2 nanofilms show an increase in exchange current densities by at least two-fold, in agreement with the theoretical calculations. This work opens up further opportunities for improving electrochemical catalysts by incorporating promoters into particular atomic sites, and for using well-defined systems in order to understand the origin of the promotion effects.
文摘The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-layer MoSe2 nanosheets. By using Se and MoO3 as the chemical vapor supply, we demonstrate that highly crystalline MoSe2 can be directly grown on the 300 nm SiO2/Si substrates to form optically distinguishable single- and multi-layer nanosheets, typically in triangular shaped domains with edge lengths around 30 btm, which can merge into continuous thin films upon further growth. Micro-Raman spectroscopy and imaging was used to probe the thickness-dependent vibrational properties. Photoluminescence spectroscopy demonstrates that MoSe2 monolayers exhibit strong near band edge emission at 1.55 eV, while bilayers or multi-layers exhibit much weaker emission, indicating of the transition to a direct band gap semiconductor as the thickness is reduced to a monolayer.
基金by the Materials,Structures and Devices(MSD)Focus Center,one of the five centers of the Focus Center Research Program,a Semiconductor Research Corporation program.Support from NSF/CTS 05-06830(X.J.and M.S.D)and NSF/DMR07-04197(A.R.and M.S.D.)is also acknowledged.Raman measurements were carried out in the George R.Harrison Spectroscopy Laboratory supported by NSF-CHE 0111370 and NIH-RR02594 grants.
文摘We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition(CVD).Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can signifi cantly improve the thickness uniformity.As a result,one-or two-layer graphene regions occupy up to 87%of the fi lm area.Single layer coverage accounts for 5%11%of the overall fi lm.These regions expand across multiple grain boundaries of the underlying polycrystalline Ni fi lm.The number density of sites with multilayer graphene/graphite(>2 layers)is reduced as the cooling rate decreases.These fi lms can also be transferred to other substrates and their sizes are only limited by the sizes of the Ni fi lm and the CVD chamber.Here,we demonstrate the formation of fi lms as large as 1 in^(2).These fi ndings represent an important step towards the fabrication of large-scale high-quality graphene samples.
文摘Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge and discharge result in pulverization of Si electrodes and fast capacity loss on cycling. This drawback of Si electrodes can be overcome by combination with well-organized graphene foam. In this work, hierarchical three-dimensional carbon-coated mesoporous Si nanospheres@graphene foam (C@Si@GF) nanoarchitectures were successfully synthesized by a thermal bubble ejection assisted chemical-vapor-deposition and magnesiothermic reduction method. The morphology and structure of the as-prepared nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. When employed as anode materials in lithium ion batteries, C@Si@GF nanocomposites exhibited superior electrochemical per- formance including a high specific capacity of 1,200 mAh/g at the current density of 1A/g, excellent high rate capabilities and an outstanding cyclability. Post-mortem analyses identified that the morphology of 3D C@Si@GF electrodes after 200 cycles was well maintained. The synergistic effects arising from the combination of mesoporous Si nanospheres and graphene foam nanoarchitectures may address the intractable pulverization problem of Si electrode.
基金Acknowledgements This work was financially supported by the National Basic Research Program of China (Nos. 2013CB932603, 2012CB933404, 2011CB921903, and 2013CB934600), the National Natural Science Foundation of China (Nos. 51432002, 51290272, 51121091, 51~201, and 11222434), the Ministry of Education (No. 20120001130010) and the Beijing Municipal Sdence and Technology Planning Project (No. Z151100003315013).
文摘Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400-600 ℃. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.
基金by the Army Research Office and the Office of Naval Research.
文摘Here we present an easy one-step approach to pattern uniform catalyst lines for the growth of dense,aligned parallel arrays of single-walled carbon nanotubes(SWNTs)on quartz wafers by using photolithography or polydimethylsiloxane(PDMS)stamp microcontact printing(μCP).By directly doping an FeCl3/methanol solution into Shipley 1827 photoresist or polyvinylpyrrolidone(PVP),various catalyst lines can be well-patterned on a wafer scale.In addition,during the chemical vapor deposition(CVD)growth of SWNTs the polymer layers play a very important role in the formation of mono-dispersed nanoparticles.This universal and effi cient method for the patterning growth of SWNTs arrays on a surface is compatible with the micro-electronics industry,thus enabling of the fabrication highly integrated circuits of SWNTs.
基金financially supported by the National Key R&D Plan(No.2017YFB0306103)the Fundamental Research Funds for the Central Universitiesthe National Program for Support of Top-notch Young Professionals。
文摘Plasma spray–physical vapor deposition(PS–PVD)is a unique technology that enables highly tailorable functional films and coatings with various rare metal elements to be processed.This technology bridges the gap between conventional thermal spray and vapor deposition and provides a variety of coating microstructures composed of vapor,liquid,and solid deposition units.The PS–PVD technique serves a broad range of applications in the fields of thermal barrier coatings(TBCs),environmental barrier coatings(EBCs),oxygen permeable films,and electrode films.It also represents the development direction of high-performance TBC/EBC preparation technologies.With the PS–PVD technique,the composition of the deposition unit determines the microstructure of the coating and its performance.When coating materials are injected into a nozzle and transported into the plasma jet,the deposition unit generated by a coating material is affected by the plasma jet characteristics.However,there is no direct in situ measurement method of material transfer and deposition processes in the PS–PVD plasma jet,because of the extreme conditions of PS–PVD such as a low operating pressure of*100 Pa,temperatures of thousands of degrees,and a thin and high-velocity jet.Despite the difficulties,the transport and transformation behaviors of the deposition units were also researched by optical emission spectroscopy,observation of the coating microstructure and other methods.This paper reviews the progress of PS–PVD technologies considering the preparation of advanced thermal barrier coatings from the perspective of the transport and transformation behaviors of the deposition units.The development prospects of new high-performance TBCs using the PS–PVD technique are also discussed.