A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a fore...A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas.展开更多
The Loess Plateau is one typical area of serious soil erosion in the world. China has implemented ′Grain for Green′(GFG) project to restore the eco-environment of the Loess Plateau since 1999. With the GFG project s...The Loess Plateau is one typical area of serious soil erosion in the world. China has implemented ′Grain for Green′(GFG) project to restore the eco-environment of the Loess Plateau since 1999. With the GFG project subsidy approaching the end, it is concerned that farmers of fewer subsidies may reclaim land again. Thus, ′Gully Land Consolidation Project′(GLCP) was initiated in 2010. The core of the GLCP was to create more land suitable for farming in gullies so as to reduce land reclamation on the slopes which are ecological vulnerable areas. This paper aims to assess the effect of the GLCP on soil erosion problems by studying Wangjiagou project region located in the central part of Anzi valley in the middle of the Loess Plateau, mainly using the revised universal soil loss equation(RUSLE) based on GIS. The findings show that the GLCP can help to reduce soil shipment by 9.87% and it creates more terraces and river-nearby land suitable for farming which account for 27.41% of the whole study area. Thus, it is feasible to implement the GLCP in places below gradient 15°, though the GLCP also intensifies soil erosion in certain places such as field ridge, village land, floodplain, natural grassland, and shrub land. In short, the GLCP develops new generation dam land and balances the short-term and long-term interests to ease the conflicts between economic development and environmental protection. Furthermore, the GLCP and the GFG could also be combined preferably. On the one hand, the GFG improves the ecological environment, which could offer certain safety to the GLCP, on the other hand, the GLCP creates more farmland favorable for farming in gullies instead of land reclamation on the slopes, which could indirectly protect the GFG project.展开更多
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is...A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation.展开更多
In a majority of cases of long-time numerical integration for initial-value problems, roundoff error has received little attention. Using twenty-nine numerical methods, the influence of round-off error on numerical so...In a majority of cases of long-time numerical integration for initial-value problems, roundoff error has received little attention. Using twenty-nine numerical methods, the influence of round-off error on numerical solutions is generally studied through a large number of numerical experiments. Here we find that there exists a strong dependence on machine precision (which is a new kind of dependence different from the sensitive dependence on initial conditions), maximally effective computation time (MECT) and optimal stepsize (OS) in solving nonlinear ordinary differential equations (ODEs) in finite machine precision. And an optimal searching method for evaluating MECT and OS under finite machine precision is presented. The relationships between MECT, OS, the order of numerical method and machine precision are found. Numerical results show that round-off error plays a significant role in the above phenomena. Moreover, we find two universal relations which are independent of the types of ODEs, initial values and numerical schemes. Based on the results of numerical experiments, we present a computational uncertainty principle, which is a great challenge to the reliability of long-time numerical integration for nonlinear ODEs.展开更多
To give soils and soil degradation,which are among the most crucial threats to ecosystem stability,social and political visibility,small and large scale modelling and mapping of soil erosion is inevitable.The most wid...To give soils and soil degradation,which are among the most crucial threats to ecosystem stability,social and political visibility,small and large scale modelling and mapping of soil erosion is inevitable.The most widely used approaches during an 80year history of erosion modelling are Universal Soil Loss Equation (USLE)-type based algorithms which have been applied in 109 countries.Addressing soil erosion by water (excluding gully erosion and land sliding),we start this review with a statistical evaluation of nearly 2,000 publications).We discuss model developments which use USLE-type equations as basis or side modules,but we also address recent development of the single USLE parameters (R,K,LS,C,P).Importance,aim and limitations of model validation as well as a comparison of USLE-type models with other erosion assessment tools are discussed.Model comparisons demonstrate that the application of process-based physical models (e.g.,WEPP or PESERA) does not necessarily result in lower uncertainties compared to more simple structured empirical models such as USLE-type algorithms.We identified four key areas for future research:(i) overcoming the principally different nature of modelled (gross) versus measured (net) erosion rates,in coupling on-site erosion risk to runoff patterns,and depositional regime,(ii) using the recent increase in spatial resolution of remote sensing data to develop process based models for large scale applications,(iii) strengthen and extend measurement and monitoring programs to build up validation data sets,and (iv) rigorous uncertainty assessment and the application of objective evaluation criteria to soil erosion modelling.展开更多
Colorectal cancer (CRC) incidence and mortality are constantly decreasing, but CRC still remains the third most prevalent cancer and the third most common cause of cancer death in both males and females in the United ...Colorectal cancer (CRC) incidence and mortality are constantly decreasing, but CRC still remains the third most prevalent cancer and the third most common cause of cancer death in both males and females in the United States. Recent rapid declines in CRC incidence rates have largely been attributed to increases in screening that can detect and remove precancerous polyps, and the decrease in death rates for CRC largely reflects improvements in early detection, treatment and the understanding of molecular/genetic basis of CRC. One of the important molecular/genetic findings is the presence of microsatellite instability (MSI) in CRCs. Many studies have shown the importance of MSI testing in diagnosing Lynch syndrome and predicting prognosis and response to chemotherapeutic agents in CRCs. Increased emphasis has been placed on the importance of MSI testing for all newly diagnosed individuals with CRCs. Both immunohistochemical staining (IHC) and polymerase chain reaction (PCR)-based MSI testing show high sensitivity and specificity in detecting MSI. The current clinical guidelines and histopathology features are indicative of, but not reliable in diagnosing Lynch syndrome and CRCs with MSI. Currently, there are evidences that universal testing for MSI starting with either IHC or PCR-based MSI testing is cost effective, sensitive, specific and is getting widely accepted.展开更多
The error propagation for general numerical method in ordinarydifferential equations ODEs is studied. Three kinds of convergence, theoretical, numerical and actual convergences, are presented. The various components o...The error propagation for general numerical method in ordinarydifferential equations ODEs is studied. Three kinds of convergence, theoretical, numerical and actual convergences, are presented. The various components of round-off error occurring in floating-point computation are fully detailed. By introducing a new kind of recurrent inequality, the classical error bounds for linear multistep methods are essentially improved, and joining probabilistic theory the “normal” growth of accumulated round-off error is derived. Moreover, a unified estimate for the total error of general method is given. On the basis of these results, we rationally interpret the various phenomena found in the numerical experiments in part I of this paper and derive two universal relations which are independent of types of ODEs, initial values and numerical schemes and are consistent with the numerical results. Furthermore, we give the explicitly mathematical expression of the computational uncertainty principle and expound the intrinsic relation between two uncertainties which result from the inaccuracies of numerical method and calculating machine.展开更多
文摘A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas.
基金Under the auspices of National Natural Science Foundation of China(No.41130748,41471143)
文摘The Loess Plateau is one typical area of serious soil erosion in the world. China has implemented ′Grain for Green′(GFG) project to restore the eco-environment of the Loess Plateau since 1999. With the GFG project subsidy approaching the end, it is concerned that farmers of fewer subsidies may reclaim land again. Thus, ′Gully Land Consolidation Project′(GLCP) was initiated in 2010. The core of the GLCP was to create more land suitable for farming in gullies so as to reduce land reclamation on the slopes which are ecological vulnerable areas. This paper aims to assess the effect of the GLCP on soil erosion problems by studying Wangjiagou project region located in the central part of Anzi valley in the middle of the Loess Plateau, mainly using the revised universal soil loss equation(RUSLE) based on GIS. The findings show that the GLCP can help to reduce soil shipment by 9.87% and it creates more terraces and river-nearby land suitable for farming which account for 27.41% of the whole study area. Thus, it is feasible to implement the GLCP in places below gradient 15°, though the GLCP also intensifies soil erosion in certain places such as field ridge, village land, floodplain, natural grassland, and shrub land. In short, the GLCP develops new generation dam land and balances the short-term and long-term interests to ease the conflicts between economic development and environmental protection. Furthermore, the GLCP and the GFG could also be combined preferably. On the one hand, the GFG improves the ecological environment, which could offer certain safety to the GLCP, on the other hand, the GLCP creates more farmland favorable for farming in gullies instead of land reclamation on the slopes, which could indirectly protect the GFG project.
基金the National Natural Science Foundation of China (50138010)
文摘A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation.
文摘In a majority of cases of long-time numerical integration for initial-value problems, roundoff error has received little attention. Using twenty-nine numerical methods, the influence of round-off error on numerical solutions is generally studied through a large number of numerical experiments. Here we find that there exists a strong dependence on machine precision (which is a new kind of dependence different from the sensitive dependence on initial conditions), maximally effective computation time (MECT) and optimal stepsize (OS) in solving nonlinear ordinary differential equations (ODEs) in finite machine precision. And an optimal searching method for evaluating MECT and OS under finite machine precision is presented. The relationships between MECT, OS, the order of numerical method and machine precision are found. Numerical results show that round-off error plays a significant role in the above phenomena. Moreover, we find two universal relations which are independent of the types of ODEs, initial values and numerical schemes. Based on the results of numerical experiments, we present a computational uncertainty principle, which is a great challenge to the reliability of long-time numerical integration for nonlinear ODEs.
文摘To give soils and soil degradation,which are among the most crucial threats to ecosystem stability,social and political visibility,small and large scale modelling and mapping of soil erosion is inevitable.The most widely used approaches during an 80year history of erosion modelling are Universal Soil Loss Equation (USLE)-type based algorithms which have been applied in 109 countries.Addressing soil erosion by water (excluding gully erosion and land sliding),we start this review with a statistical evaluation of nearly 2,000 publications).We discuss model developments which use USLE-type equations as basis or side modules,but we also address recent development of the single USLE parameters (R,K,LS,C,P).Importance,aim and limitations of model validation as well as a comparison of USLE-type models with other erosion assessment tools are discussed.Model comparisons demonstrate that the application of process-based physical models (e.g.,WEPP or PESERA) does not necessarily result in lower uncertainties compared to more simple structured empirical models such as USLE-type algorithms.We identified four key areas for future research:(i) overcoming the principally different nature of modelled (gross) versus measured (net) erosion rates,in coupling on-site erosion risk to runoff patterns,and depositional regime,(ii) using the recent increase in spatial resolution of remote sensing data to develop process based models for large scale applications,(iii) strengthen and extend measurement and monitoring programs to build up validation data sets,and (iv) rigorous uncertainty assessment and the application of objective evaluation criteria to soil erosion modelling.
文摘Colorectal cancer (CRC) incidence and mortality are constantly decreasing, but CRC still remains the third most prevalent cancer and the third most common cause of cancer death in both males and females in the United States. Recent rapid declines in CRC incidence rates have largely been attributed to increases in screening that can detect and remove precancerous polyps, and the decrease in death rates for CRC largely reflects improvements in early detection, treatment and the understanding of molecular/genetic basis of CRC. One of the important molecular/genetic findings is the presence of microsatellite instability (MSI) in CRCs. Many studies have shown the importance of MSI testing in diagnosing Lynch syndrome and predicting prognosis and response to chemotherapeutic agents in CRCs. Increased emphasis has been placed on the importance of MSI testing for all newly diagnosed individuals with CRCs. Both immunohistochemical staining (IHC) and polymerase chain reaction (PCR)-based MSI testing show high sensitivity and specificity in detecting MSI. The current clinical guidelines and histopathology features are indicative of, but not reliable in diagnosing Lynch syndrome and CRCs with MSI. Currently, there are evidences that universal testing for MSI starting with either IHC or PCR-based MSI testing is cost effective, sensitive, specific and is getting widely accepted.
基金This work was supported by the Knowledge Innovation Key Project of Chinese Academy of Sciences inthe Resource Environment Field (KZCX1-203) Outstanding State Key Laboratory Project (Grant No. 49823002) the National Natural Science Foundation of C
文摘The error propagation for general numerical method in ordinarydifferential equations ODEs is studied. Three kinds of convergence, theoretical, numerical and actual convergences, are presented. The various components of round-off error occurring in floating-point computation are fully detailed. By introducing a new kind of recurrent inequality, the classical error bounds for linear multistep methods are essentially improved, and joining probabilistic theory the “normal” growth of accumulated round-off error is derived. Moreover, a unified estimate for the total error of general method is given. On the basis of these results, we rationally interpret the various phenomena found in the numerical experiments in part I of this paper and derive two universal relations which are independent of types of ODEs, initial values and numerical schemes and are consistent with the numerical results. Furthermore, we give the explicitly mathematical expression of the computational uncertainty principle and expound the intrinsic relation between two uncertainties which result from the inaccuracies of numerical method and calculating machine.