A new epidemic SIRS model with discrete delay on scale-free network is presented. We give the formula of the basic reproductive number for the model and prove that the disease dies out when the basic reproductive numb...A new epidemic SIRS model with discrete delay on scale-free network is presented. We give the formula of the basic reproductive number for the model and prove that the disease dies out when the basic reproductive number is less than unity, while the disease is uniformly persistent when the basic reproductive number is more than unity. Numerical simulations are given to demonstrate the main results.展开更多
In this paper,by applying Comparison Theorem of differential equation,Continuation Theorem of coincidence degree theory,Barbalat Lemma and Lyapunov Function,a diffusion system with distributive time delay and ratio-de...In this paper,by applying Comparison Theorem of differential equation,Continuation Theorem of coincidence degree theory,Barbalat Lemma and Lyapunov Function,a diffusion system with distributive time delay and ratio-dependence functional response is studied.It is proved that the system is uniformly persistent under appropriate conditions.Further,if the system is a periodic one,it can have a strictly positive periodic solution which is globally asymptotically stable under appropriations.Some new results are obtained.展开更多
文摘A new epidemic SIRS model with discrete delay on scale-free network is presented. We give the formula of the basic reproductive number for the model and prove that the disease dies out when the basic reproductive number is less than unity, while the disease is uniformly persistent when the basic reproductive number is more than unity. Numerical simulations are given to demonstrate the main results.
文摘In this paper,by applying Comparison Theorem of differential equation,Continuation Theorem of coincidence degree theory,Barbalat Lemma and Lyapunov Function,a diffusion system with distributive time delay and ratio-dependence functional response is studied.It is proved that the system is uniformly persistent under appropriate conditions.Further,if the system is a periodic one,it can have a strictly positive periodic solution which is globally asymptotically stable under appropriations.Some new results are obtained.