A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obta...A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.展开更多
Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and glob...Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and global attractivity of almost periodic solutions of almost periodic system.展开更多
In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse betw...In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse between the two patches, but the other is confined to one patch and cannot disperse. Our purpose is to demonstrate that the dispersion rates have no effect on the uniform persistence of the solutions of the system. Furthermore, we establish the conditions under which the system admits a positive periodic solution which attracts all solutions.展开更多
文摘A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.
基金Supported by the NNSF of China(10671021)the SRF of Hunan Provincial Education Department(09C388)
文摘Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and global attractivity of almost periodic solutions of almost periodic system.
基金This research is supported by the National Natural Science Foundation of China the Natural Science Foundation of Henan Province.
文摘In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse between the two patches, but the other is confined to one patch and cannot disperse. Our purpose is to demonstrate that the dispersion rates have no effect on the uniform persistence of the solutions of the system. Furthermore, we establish the conditions under which the system admits a positive periodic solution which attracts all solutions.