Different scales of structural data reveal a complex deformation history of ultrahigh- pressure (UHP) rocks exposed in the Weihai-Rongcbeng area, NE Sulu (northern Jiangsu-eastern Shandong), eastern China. Excludi...Different scales of structural data reveal a complex deformation history of ultrahigh- pressure (UHP) rocks exposed in the Weihai-Rongcbeng area, NE Sulu (northern Jiangsu-eastern Shandong), eastern China. Excluding pre-UHP deformations, at least five major sequential deformational stages (D1-Ds) are recognized. The first deformation (DO produced a weak foliation and lineation in massive eclogites. The foliated eclogite with a dominant foliation containing a stretching and mineral lineation was developed during the I)2 deformation. Both the D1 and D2 deformations occurred under UHP metamorphic conditions, and are well preserved in the eclogite bodies. D3 structures which developed shortly after the formation of granulite/amphibolite facies symplectites are characterized by imbricated associations marked by a regional, steeply dipping foliation, compositional layering, eclogite boudinage, isoclinal folds and reverse ductile shear zones. The D3 deformation was accompanied by decompressional partial melting. A regional, gently dipping amphibolite facies foliation and stretching lineation, low-angle detachments, and dome- and arc-shaped structures formed during the D4 deformation stage dominate to some degree the map pattern of the Weihai-Rongcbeng UHP domain. The last stage of deformation (Ds) gave rise to the final exhumation of the UHP rocks. Ds is characterized by development of brittle-dominated high-angle faulting associated with emplacement of large volmnes of undeformed granite plutons and dykes dated at 134-100 Ma. The deformational and metamorphic sequence followed by the UHP rocks in the Weihai-Rongcheng area is similar to that studied in the entire Dabie-Sulu UHP and HP metamorphic belts from microscopic to mapping scale. Based on structural data, combined with available petrographic, metamorphic and geochronological data, a speculative tectonic evolutionary model for the Dabie-Sulu UHP and IIP belts is proposed, involving continental subduction/collision between the Sino-Korean and Ya展开更多
Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisph...Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisphere. UHP metamorphic rocks are represented by coesite- and diamond-bearing eclogites and eclogite facies metamorphic rocks formed at 650-800℃ and 2.6-3.5 GPa, and most of the protoliths of UHP rocks are volcanic-sedimentary sequences of continental crust. From these it may be deduced that deep subduction of continental crust may have occurred. However, UHP rocks are exposed on the surface or occur near the surface now, which implies that they have been exhumed from great depths. The mechanism of deep subduction of continental crust and subsequent exhumation has been a hot topic of the research on continental dynamics, but there are divergent views. The focus of the dispute is how deep continental crust is subducted so that UHP rocks can be formed and what mechanism causes it to be subducted to great depths and again exhumed to the shallow surface. Through an analysis of the continental process and mechanical boundary conditions of the Dabie collisional belt-an UHP metamorphic belt where the largest area of UHP rocks in the world is exposed, this paper discusses the variations of viscous stresses and average pressure in the viscous fluid caused by tectonism with rock physical properties and the contribution of the tectonic stresses to production of UHP. Calculation indicates that the anomalous stress state on the irregular boundary of a continental block may give rise to stress concentration and accumulation at local places (where the compressional stress may be 5-9 times higher than those in their surroundings). The tectonic stresses may account for 20-35% of the total UHP. So we may infer that the HP (nigh-pressure)-UHP rocks in the Dabie Mountains were formed at depths of 60-80 km. Thus the authors propose a new genetic model of UHP rocks-the point-collision model. This model conforms to the basi展开更多
The Sulu ultra-high pressure(UHP)metamorphic belt in Eastern China is well known as the eastern extension of the Qingling-Dabie orogenic belt formed by subduction and collision between the Sino-Korean and Yangtze crat...The Sulu ultra-high pressure(UHP)metamorphic belt in Eastern China is well known as the eastern extension of the Qingling-Dabie orogenic belt formed by subduction and collision between the Sino-Korean and Yangtze cratons.The main hole of the Chinese Continental Scientific Drilling(CCSD)project is located at the southern segment of the Sulu UHP metamorphic belt(34°25′N/118°40′E),about 17 km southwest of Donghai County.Integrated geophysical investigations using gravity,magnetic,deep展开更多
基金This study is funded by the Major State Basic Research Development Program (G1999075506)the National Natural Science Foundation of China (40372094 and 49972067).
文摘Different scales of structural data reveal a complex deformation history of ultrahigh- pressure (UHP) rocks exposed in the Weihai-Rongcbeng area, NE Sulu (northern Jiangsu-eastern Shandong), eastern China. Excluding pre-UHP deformations, at least five major sequential deformational stages (D1-Ds) are recognized. The first deformation (DO produced a weak foliation and lineation in massive eclogites. The foliated eclogite with a dominant foliation containing a stretching and mineral lineation was developed during the I)2 deformation. Both the D1 and D2 deformations occurred under UHP metamorphic conditions, and are well preserved in the eclogite bodies. D3 structures which developed shortly after the formation of granulite/amphibolite facies symplectites are characterized by imbricated associations marked by a regional, steeply dipping foliation, compositional layering, eclogite boudinage, isoclinal folds and reverse ductile shear zones. The D3 deformation was accompanied by decompressional partial melting. A regional, gently dipping amphibolite facies foliation and stretching lineation, low-angle detachments, and dome- and arc-shaped structures formed during the D4 deformation stage dominate to some degree the map pattern of the Weihai-Rongcbeng UHP domain. The last stage of deformation (Ds) gave rise to the final exhumation of the UHP rocks. Ds is characterized by development of brittle-dominated high-angle faulting associated with emplacement of large volmnes of undeformed granite plutons and dykes dated at 134-100 Ma. The deformational and metamorphic sequence followed by the UHP rocks in the Weihai-Rongcheng area is similar to that studied in the entire Dabie-Sulu UHP and HP metamorphic belts from microscopic to mapping scale. Based on structural data, combined with available petrographic, metamorphic and geochronological data, a speculative tectonic evolutionary model for the Dabie-Sulu UHP and IIP belts is proposed, involving continental subduction/collision between the Sino-Korean and Ya
基金the keyfundamentalgeologicalresearch project (No.9501102-3) the Ninth Five-Year Plan supported by the Ministry of Land and Resources a projectsupported by National Natural Science Foundation ofChina grant 19972064.
文摘Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisphere. UHP metamorphic rocks are represented by coesite- and diamond-bearing eclogites and eclogite facies metamorphic rocks formed at 650-800℃ and 2.6-3.5 GPa, and most of the protoliths of UHP rocks are volcanic-sedimentary sequences of continental crust. From these it may be deduced that deep subduction of continental crust may have occurred. However, UHP rocks are exposed on the surface or occur near the surface now, which implies that they have been exhumed from great depths. The mechanism of deep subduction of continental crust and subsequent exhumation has been a hot topic of the research on continental dynamics, but there are divergent views. The focus of the dispute is how deep continental crust is subducted so that UHP rocks can be formed and what mechanism causes it to be subducted to great depths and again exhumed to the shallow surface. Through an analysis of the continental process and mechanical boundary conditions of the Dabie collisional belt-an UHP metamorphic belt where the largest area of UHP rocks in the world is exposed, this paper discusses the variations of viscous stresses and average pressure in the viscous fluid caused by tectonism with rock physical properties and the contribution of the tectonic stresses to production of UHP. Calculation indicates that the anomalous stress state on the irregular boundary of a continental block may give rise to stress concentration and accumulation at local places (where the compressional stress may be 5-9 times higher than those in their surroundings). The tectonic stresses may account for 20-35% of the total UHP. So we may infer that the HP (nigh-pressure)-UHP rocks in the Dabie Mountains were formed at depths of 60-80 km. Thus the authors propose a new genetic model of UHP rocks-the point-collision model. This model conforms to the basi
文摘The Sulu ultra-high pressure(UHP)metamorphic belt in Eastern China is well known as the eastern extension of the Qingling-Dabie orogenic belt formed by subduction and collision between the Sino-Korean and Yangtze cratons.The main hole of the Chinese Continental Scientific Drilling(CCSD)project is located at the southern segment of the Sulu UHP metamorphic belt(34°25′N/118°40′E),about 17 km southwest of Donghai County.Integrated geophysical investigations using gravity,magnetic,deep