A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equatio...A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equations that are solved simultaneously to predict the performances of the engines. The dynamic analysis performed consists of an evaluation of the frictional force and load force introduced by the generator. The thermodynamic analysis used a single zone model to describe the engine' s working cycle which includes intake, scavenging, compression, combustion and expansion, and to evaluate the effect of heat transfer based on the first law of thermodynamics and the ideal gas state equation. Because there is no crankshaft, a time based Wiebe equation was used to express the fraction of fuel burned in the combustion. The calculated results were validated by using the experimental data from another research group. The results indicate that the free-piston generator has some advantages over conventional engines.展开更多
The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder ...The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.展开更多
To develop high energy-density micro power generation systems, a novel two-stroke cycle micro free-piston swing engine (MFPSE), inspired by the concept of the micro internal combustion swing engine, is proposed to sup...To develop high energy-density micro power generation systems, a novel two-stroke cycle micro free-piston swing engine (MFPSE), inspired by the concept of the micro internal combustion swing engine, is proposed to supply mechanical power for a micro power generation system. The working principle, gas exchange and ignition timing control cycles, and structure and operation advantages of the MFPSE are dis- cussed in detail. A prototype where the timing control and geometric parameters are designed with refer- ence to a traditional two-stroke cycle internal combustion engine is fabricated. The successful ignition ex- periment shows that this new concept engine is feasible and is worthy of further study.展开更多
为了了解点火参数对某2冲程航空活塞煤油发动机燃烧及温度场的影响,利用GT-Power和Fire软件对该发动机整机及燃烧室分别建立了仿真模型,选取扭矩、功率以及缸压数据验证了该模型的正确性,并对发动机在6000 r/min、全负荷工况下的燃烧和...为了了解点火参数对某2冲程航空活塞煤油发动机燃烧及温度场的影响,利用GT-Power和Fire软件对该发动机整机及燃烧室分别建立了仿真模型,选取扭矩、功率以及缸压数据验证了该模型的正确性,并对发动机在6000 r/min、全负荷工况下的燃烧和温度场分布等特性进行分析。结果表明:当点火时刻由335°CA变化至331°CA时,缸内混合气燃烧放热量增多,放热率峰值增大,放热率峰值对应曲轴转角的提前量变大,燃烧放热速率加快,混合气温度和压力上升变快,高温区范围增大;当点火能量由28.02 m J增加至46.73 m J时,双火花塞附近的温度升高,火花塞点火产生的火核尺寸增大,缸内燃烧温度与压力升高,燃烧放热速率加快,缸内高温区分布范围增大。展开更多
Turbocharging and direct injection are main technologies used for energy-saving gasoline engines. But the biggest challenge is super-knock, whose mechanism is unclear and has no effective strategy to suppress this sup...Turbocharging and direct injection are main technologies used for energy-saving gasoline engines. But the biggest challenge is super-knock, whose mechanism is unclear and has no effective strategy to suppress this super-knock until now. The effects of injection strategies on super-knock were experimentally investigated in a turbocharged GDI engine. It was found that two-stage injections during intake stroke (TSII) can eliminate super-knock. Meanwhile, the fuel consumption, emissions and exhaust tem- perature can keep optimized level. By sweeping the start of the 1st injection (SOIl), end of the 2nd injection (EOI2) and the split injection ratios (ROI2) using 5000 cycles evaluation test at low-speed high load operating point, the optimized injection strategy for the typical TC-GDI engine is TSII with SOIl at middle of intake stroke, EOI2 at end of intake stroke, and ROI2 of 0.3.展开更多
文摘A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equations that are solved simultaneously to predict the performances of the engines. The dynamic analysis performed consists of an evaluation of the frictional force and load force introduced by the generator. The thermodynamic analysis used a single zone model to describe the engine' s working cycle which includes intake, scavenging, compression, combustion and expansion, and to evaluate the effect of heat transfer based on the first law of thermodynamics and the ideal gas state equation. Because there is no crankshaft, a time based Wiebe equation was used to express the fraction of fuel burned in the combustion. The calculated results were validated by using the experimental data from another research group. The results indicate that the free-piston generator has some advantages over conventional engines.
基金funded by the National Natural Science Foundation of China(Nos.52206131,U2233213and 51775025)the National Key R&D Program of China(2022YFB2602002,2018YFB0104100)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(LQ22E060004)the Science Center of Gas Turbine Project,China(No.P2022-A-I-001-001)。
文摘The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.
基金Supported by the National Natural Science Foundation of China (No. 50375078)
文摘To develop high energy-density micro power generation systems, a novel two-stroke cycle micro free-piston swing engine (MFPSE), inspired by the concept of the micro internal combustion swing engine, is proposed to supply mechanical power for a micro power generation system. The working principle, gas exchange and ignition timing control cycles, and structure and operation advantages of the MFPSE are dis- cussed in detail. A prototype where the timing control and geometric parameters are designed with refer- ence to a traditional two-stroke cycle internal combustion engine is fabricated. The successful ignition ex- periment shows that this new concept engine is feasible and is worthy of further study.
文摘为了了解点火参数对某2冲程航空活塞煤油发动机燃烧及温度场的影响,利用GT-Power和Fire软件对该发动机整机及燃烧室分别建立了仿真模型,选取扭矩、功率以及缸压数据验证了该模型的正确性,并对发动机在6000 r/min、全负荷工况下的燃烧和温度场分布等特性进行分析。结果表明:当点火时刻由335°CA变化至331°CA时,缸内混合气燃烧放热量增多,放热率峰值增大,放热率峰值对应曲轴转角的提前量变大,燃烧放热速率加快,混合气温度和压力上升变快,高温区范围增大;当点火能量由28.02 m J增加至46.73 m J时,双火花塞附近的温度升高,火花塞点火产生的火核尺寸增大,缸内燃烧温度与压力升高,燃烧放热速率加快,缸内高温区分布范围增大。
基金supported by the National Natural Science Foundation of China(Grant No.51036004)the Ministry of Science and Technology of China through the Project 2012AA111715
文摘Turbocharging and direct injection are main technologies used for energy-saving gasoline engines. But the biggest challenge is super-knock, whose mechanism is unclear and has no effective strategy to suppress this super-knock until now. The effects of injection strategies on super-knock were experimentally investigated in a turbocharged GDI engine. It was found that two-stage injections during intake stroke (TSII) can eliminate super-knock. Meanwhile, the fuel consumption, emissions and exhaust tem- perature can keep optimized level. By sweeping the start of the 1st injection (SOIl), end of the 2nd injection (EOI2) and the split injection ratios (ROI2) using 5000 cycles evaluation test at low-speed high load operating point, the optimized injection strategy for the typical TC-GDI engine is TSII with SOIl at middle of intake stroke, EOI2 at end of intake stroke, and ROI2 of 0.3.