Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In ...Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In order to avoid the unphysical motion of the interface,a novel eddy-viscosity eliminator based on sigmoid functions is designed to reduce the excessive turbulence level,and the eddy-viscosity eliminator based on polynomials is extracted from the cavitation simulations.Surface elevations by combining the eddy-viscosity eliminators and classical two-equation closure models are compared with the experiments,the ones by using the adaptive asymptotic model(AAM)and the ones by using the modified two-equation closure models.The root-mean-squared error(RMSE)is introduced to quantify the accuracies of surface elevations and the forces.The relation between the turbulence level in the transition layer and RMSEs of surface elevations is studied.Besides,the parametric analysis of the eddy-viscosity eliminators is carried out.The studies suggest that(1)the excessive turbulence level in the transition layer around the interface has a significant influence on the accuracies of surface elevations and the forces;(2)the eddy-viscosity eliminators can effectively reduce the excessive turbulence level in the transition layer to avoid the unphysical motion of the interface;(3)the k-ωSST model combined with the eddy-viscosity eliminators is appropriate for predicting surface elevations and forces in RANS simulations of sloshing flow.展开更多
文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比...文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比分析研究,数值模拟能够客观地反映起旋室旋流的流场特性,成果可为旋流溢洪道的研究应用提供参考.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11802176,11802301)。
文摘Reynolds-averaged Navier-Stokes(RANS)turbulence modeling can lead to the excessive turbulence level around the interface in two-phase flow,which causes the unphysical motion of the interface in sloshing simulation.In order to avoid the unphysical motion of the interface,a novel eddy-viscosity eliminator based on sigmoid functions is designed to reduce the excessive turbulence level,and the eddy-viscosity eliminator based on polynomials is extracted from the cavitation simulations.Surface elevations by combining the eddy-viscosity eliminators and classical two-equation closure models are compared with the experiments,the ones by using the adaptive asymptotic model(AAM)and the ones by using the modified two-equation closure models.The root-mean-squared error(RMSE)is introduced to quantify the accuracies of surface elevations and the forces.The relation between the turbulence level in the transition layer and RMSEs of surface elevations is studied.Besides,the parametric analysis of the eddy-viscosity eliminators is carried out.The studies suggest that(1)the excessive turbulence level in the transition layer around the interface has a significant influence on the accuracies of surface elevations and the forces;(2)the eddy-viscosity eliminators can effectively reduce the excessive turbulence level in the transition layer to avoid the unphysical motion of the interface;(3)the k-ωSST model combined with the eddy-viscosity eliminators is appropriate for predicting surface elevations and forces in RANS simulations of sloshing flow.
文摘文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比分析研究,数值模拟能够客观地反映起旋室旋流的流场特性,成果可为旋流溢洪道的研究应用提供参考.