Whether long non-coding RNA myocardial infarction-associated transcript is involved in oxygen-induced retinopathy remains poorly understood. To validate this hypothesis, we established a newborn mouse model of oxygen-...Whether long non-coding RNA myocardial infarction-associated transcript is involved in oxygen-induced retinopathy remains poorly understood. To validate this hypothesis, we established a newborn mouse model of oxygen-induced retinopathy by feeding in an oxygen concentration of 75 ± 2% from postnatal day 8 to postnatal day 12, followed by in normal air. On postnatal day 11, the mice were injected with the myocardial infarction-associated transcript siRNA plasmid via the vitreous cavity to knockdown long non-coding RNA myocardial infarction-associated transcript. Myocardial infarction-associated transcript siRNA transcription significantly inhibited myocardial infarctionassociated transcript mRNA expression, reduced the phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor immunopositivities, protein and mRNA expression, and alleviated the pathological damage to the retina of oxygen-induced retinopathy mouse models. These findings suggest that myocardial infarction-associated transcript is likely involved in the retinal neovascularization in retinopathy of prematurity and that inhibition of myocardial infarction-associated transcript can downregulate phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor expression levels and inhibit neovascularization. This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China(approval No. 2016 PS074 K) on February 25, 2016.展开更多
Leaf rolling(LR)is one of the defensive mechanisms that plants have developed against adverse environmental conditions.LR is a typical drought response,promoting drought resistance in various gramineae species,includi...Leaf rolling(LR)is one of the defensive mechanisms that plants have developed against adverse environmental conditions.LR is a typical drought response,promoting drought resistance in various gramineae species,including wheat,maize,and rice.Rice cultivation faces the formidable challenge of water deprivation because of its high water requirements,which leads to drought-related symptoms in rice.LR is an important morphological characteristic that plays a key role in controlling water loss during water insufficiency,thereby regulating leaf area and stature,which are crucial agronomic traits determining yield criteria.Bulliform,sclerenchyma,mesophyll,and vascular bundles are the cells that engage in LR and commonly exhibit adaxial or abaxial types of rolling in rice.The specific genes linked to rolling,either adaxially or abaxially,are discussed here.In addition to the factors influencing LR,here is a short review of the morphological,physiological and molecular responses of this adaptation under drought stress.Moreover,this review highlights how LR combats the consequences of drought stress.The eco-physiological and molecular mechanisms underlying this morphological adaptation in rice should be further explored,as they might be useful in dealing with various degrees of drought tolerance.展开更多
The gain of transcription factor binding sites(TFBS) is believed to represent one of the major causes of biological innovation.Here we used strategies based on comparative genomics to identify 21,822 TFBS specific to ...The gain of transcription factor binding sites(TFBS) is believed to represent one of the major causes of biological innovation.Here we used strategies based on comparative genomics to identify 21,822 TFBS specific to the human lineage(TFBS-HS),when compared to chimpanzee and gorilla genomes. More than 40%(9,206) of these TFBS-HS are in the vicinity of 1,283 genes.A comparison of the expression pattern of these genes and the corresponding orthologs in chimpanzee and gorilla identified genes differentially expressed in human tissues. These genes show a more divergent expression pattern in the human testis and brain, suggesting a role for positive selection in the fixation of TFBS gains. Genes associated with TFBS-HS were enriched in gene ontology categories related to transcriptional regulation, signaling, differentiation/development and nervous system.Furthermore, genes associated with TFBS-HS present a higher expression breadth when compared to genes in general. This biased distribution is due to a preferential gain of TFBS in genes with higher expression breadth rather than a shift in the expression pattern after the gain of TFBS.展开更多
基金supported by the National Natural Science Foundation of China,No.81600747(to YD)the Start-Up Foundation for Doctors of Liaoning Province,China,No.201501020(to YD)。
文摘Whether long non-coding RNA myocardial infarction-associated transcript is involved in oxygen-induced retinopathy remains poorly understood. To validate this hypothesis, we established a newborn mouse model of oxygen-induced retinopathy by feeding in an oxygen concentration of 75 ± 2% from postnatal day 8 to postnatal day 12, followed by in normal air. On postnatal day 11, the mice were injected with the myocardial infarction-associated transcript siRNA plasmid via the vitreous cavity to knockdown long non-coding RNA myocardial infarction-associated transcript. Myocardial infarction-associated transcript siRNA transcription significantly inhibited myocardial infarctionassociated transcript mRNA expression, reduced the phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor immunopositivities, protein and mRNA expression, and alleviated the pathological damage to the retina of oxygen-induced retinopathy mouse models. These findings suggest that myocardial infarction-associated transcript is likely involved in the retinal neovascularization in retinopathy of prematurity and that inhibition of myocardial infarction-associated transcript can downregulate phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor expression levels and inhibit neovascularization. This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China(approval No. 2016 PS074 K) on February 25, 2016.
文摘Leaf rolling(LR)is one of the defensive mechanisms that plants have developed against adverse environmental conditions.LR is a typical drought response,promoting drought resistance in various gramineae species,including wheat,maize,and rice.Rice cultivation faces the formidable challenge of water deprivation because of its high water requirements,which leads to drought-related symptoms in rice.LR is an important morphological characteristic that plays a key role in controlling water loss during water insufficiency,thereby regulating leaf area and stature,which are crucial agronomic traits determining yield criteria.Bulliform,sclerenchyma,mesophyll,and vascular bundles are the cells that engage in LR and commonly exhibit adaxial or abaxial types of rolling in rice.The specific genes linked to rolling,either adaxially or abaxially,are discussed here.In addition to the factors influencing LR,here is a short review of the morphological,physiological and molecular responses of this adaptation under drought stress.Moreover,this review highlights how LR combats the consequences of drought stress.The eco-physiological and molecular mechanisms underlying this morphological adaptation in rice should be further explored,as they might be useful in dealing with various degrees of drought tolerance.
基金supported by the Ludwig Institute for Cancer ResearchCAPES(23038.004629/2014-19)
文摘The gain of transcription factor binding sites(TFBS) is believed to represent one of the major causes of biological innovation.Here we used strategies based on comparative genomics to identify 21,822 TFBS specific to the human lineage(TFBS-HS),when compared to chimpanzee and gorilla genomes. More than 40%(9,206) of these TFBS-HS are in the vicinity of 1,283 genes.A comparison of the expression pattern of these genes and the corresponding orthologs in chimpanzee and gorilla identified genes differentially expressed in human tissues. These genes show a more divergent expression pattern in the human testis and brain, suggesting a role for positive selection in the fixation of TFBS gains. Genes associated with TFBS-HS were enriched in gene ontology categories related to transcriptional regulation, signaling, differentiation/development and nervous system.Furthermore, genes associated with TFBS-HS present a higher expression breadth when compared to genes in general. This biased distribution is due to a preferential gain of TFBS in genes with higher expression breadth rather than a shift in the expression pattern after the gain of TFBS.