Research on the flow field inside a turbo classifier is complicated though important. According to the stochastic trajectory model of particles in gas-solid two-phase flow, and adopting the PHOENICS code, numerical si...Research on the flow field inside a turbo classifier is complicated though important. According to the stochastic trajectory model of particles in gas-solid two-phase flow, and adopting the PHOENICS code, numerical simulation is carried out on the flow field, including particle trajectory, in the inner cavity of a turbo classifier, using both straight and backward crooked elbow blades. Computation results show that when the backward crooked elbow blades are used, the mixed stream that passes through the two blades produces a vortex in the positive direction which counteracts the attached vortex in the opposite direction due to the high-speed turbo rotation, making the flow steadier, thus improving both the grade efficiency and precision of the turbo classifier. This research provides positive theoretical evidences for designing sub-micron particle classifiers with high efficiency and accuracy.展开更多
For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advant...For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advantages of chattering-free and adjustable convergence time.First of all,the kinematics model of the robot is established in mobile carrier coordinates.Secondly,the global structure including terminal attractor and exponential convergence of the fast terminal sliding mode trajectory tracking controller is proved by Lyapunov stability theory,ensuring that the trajectory and heading angle tracking error converges to a smaller zero range in finite time.Finally,the artificial potential field obstacle avoidance method is introduced to make the robot not only track the reference trajectory strictly,but also avoid the obstacles.The simulation results show that the proposed method can achieve a stable tracking control in finite time for a given reference trajectory.展开更多
In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model m...In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model molecule A2B,Hydrogen ion H+2 and elementary atmospheric reaction N(4S)+O2(X 3Σ−g)→NO(X 2Π)+O(3P)calculated by means of Runge-Kutta methods and symplectic methods;the classical dissociation of the HF molecule and classical dynamics of H+2 in an intense laser field;the symplectic form and symplectic-scheme shooting method for the time-independent Schr¨odinger equation;the computation of continuum eigenfunction of the Schr¨odinger equation;asymptotic boundary conditions for solving the time-dependent Schr¨odinger equation of an atom in an intense laser field;symplectic discretization based on asymptotic boundary condition and the numerical eigenfunction expansion;and applications in computing multi-photon ionization,above-threshold ionization,Rabbi oscillation and high-order harmonic generation of laser-atom interaction.展开更多
文摘Research on the flow field inside a turbo classifier is complicated though important. According to the stochastic trajectory model of particles in gas-solid two-phase flow, and adopting the PHOENICS code, numerical simulation is carried out on the flow field, including particle trajectory, in the inner cavity of a turbo classifier, using both straight and backward crooked elbow blades. Computation results show that when the backward crooked elbow blades are used, the mixed stream that passes through the two blades produces a vortex in the positive direction which counteracts the attached vortex in the opposite direction due to the high-speed turbo rotation, making the flow steadier, thus improving both the grade efficiency and precision of the turbo classifier. This research provides positive theoretical evidences for designing sub-micron particle classifiers with high efficiency and accuracy.
基金National Natural Science Foundation of China(No.61673042)Shanxi Province Science Foundation for Youths(No.201701D221123)。
文摘For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advantages of chattering-free and adjustable convergence time.First of all,the kinematics model of the robot is established in mobile carrier coordinates.Secondly,the global structure including terminal attractor and exponential convergence of the fast terminal sliding mode trajectory tracking controller is proved by Lyapunov stability theory,ensuring that the trajectory and heading angle tracking error converges to a smaller zero range in finite time.Finally,the artificial potential field obstacle avoidance method is introduced to make the robot not only track the reference trajectory strictly,but also avoid the obstacles.The simulation results show that the proposed method can achieve a stable tracking control in finite time for a given reference trajectory.
基金supported in part by the National Natural Science Foundation of China(#10574057,#10571074,and#10171039)by the Specialized Research Fund for the Doctoral Program of Higher Education(#20050183010).
文摘In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model molecule A2B,Hydrogen ion H+2 and elementary atmospheric reaction N(4S)+O2(X 3Σ−g)→NO(X 2Π)+O(3P)calculated by means of Runge-Kutta methods and symplectic methods;the classical dissociation of the HF molecule and classical dynamics of H+2 in an intense laser field;the symplectic form and symplectic-scheme shooting method for the time-independent Schr¨odinger equation;the computation of continuum eigenfunction of the Schr¨odinger equation;asymptotic boundary conditions for solving the time-dependent Schr¨odinger equation of an atom in an intense laser field;symplectic discretization based on asymptotic boundary condition and the numerical eigenfunction expansion;and applications in computing multi-photon ionization,above-threshold ionization,Rabbi oscillation and high-order harmonic generation of laser-atom interaction.