The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operatin...The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.展开更多
A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations ...A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law.展开更多
This paper focuses on the problem of linear track keeping for marine surface vessels. The influence exerted by sea currents on the kinematic equation of ships is considered first. The input-to-state stability(ISS) the...This paper focuses on the problem of linear track keeping for marine surface vessels. The influence exerted by sea currents on the kinematic equation of ships is considered first. The input-to-state stability(ISS) theory used to verify the system is input-to-state stable. Combining the Nussbaum gain with backstepping techniques,a robust adaptive fuzzy algorithm is presented by employing fuzzy systems as an approximator for unknown nonlinearities in the system. It is proved that the proposed algorithm that guarantees all signals in the closed-loop system are ultimately bounded. Consequently,a ship's linear track-keeping control can be implemented. Simulation results using Dalian Maritime University's ocean-going training ship 'YULONG' are presented to validate the effectiveness of the proposed algorithm.展开更多
为满足全任务航海模拟器的功能需要,采用VisualC++重新进行设计,改进了原用C语言实现的船舶航迹自动舵.航迹保持算法采用间接式算法,超出偏差带时采用多模态控制,使船舶回到偏差带以内;航向保持采用常规PID控制算法.仿真结果表明,风力7...为满足全任务航海模拟器的功能需要,采用VisualC++重新进行设计,改进了原用C语言实现的船舶航迹自动舵.航迹保持算法采用间接式算法,超出偏差带时采用多模态控制,使船舶回到偏差带以内;航向保持采用常规PID控制算法.仿真结果表明,风力7级时,在超出偏差带或转向时船舶均能自动回到预定航线上,最大航迹偏差为2 n mile.采用VC实现的航迹自动舵可满足航海模拟器的功能要求.展开更多
In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and stron...In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and strong coupled, an approach is used to divide it into two subsystems. One is to control the heading and the track error on the horizontal plane. The other is to control the pitch and the track error on the vertical plane. The results of computer simulation show that the autopilot works properly, it can capture the current waypoint and turns to track the next path automatically.展开更多
文摘The fuzzy switched PID controller which combines fuzzy PD and conventional PI controller is proposed for ship track-keeping autopilot In this paper. By using rudder angle, the whole voyage is divided into two operating regimes which named transient operating regime and steady operating regime respectively. The fuzzy PD controller is employed in transient operating regime for increasing response, reducing overshoot and shorting transition time. And conventional PI controller is used to improve the stable accuracy in steady operating regime. The global controller is achieved by fuzzy blending of all local controllers. Routh stability criterion is utilized to obtain the stability condition of closed-loop system. The simulation results show the effectiveness of proposed method.
基金Navy Engineering University Natural Science Foundation (NoHGDJJ05013)
文摘A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law.
基金Supported by the National Natural Science Foundation of China under Grant No. 10572094.
文摘This paper focuses on the problem of linear track keeping for marine surface vessels. The influence exerted by sea currents on the kinematic equation of ships is considered first. The input-to-state stability(ISS) theory used to verify the system is input-to-state stable. Combining the Nussbaum gain with backstepping techniques,a robust adaptive fuzzy algorithm is presented by employing fuzzy systems as an approximator for unknown nonlinearities in the system. It is proved that the proposed algorithm that guarantees all signals in the closed-loop system are ultimately bounded. Consequently,a ship's linear track-keeping control can be implemented. Simulation results using Dalian Maritime University's ocean-going training ship 'YULONG' are presented to validate the effectiveness of the proposed algorithm.
文摘为满足全任务航海模拟器的功能需要,采用VisualC++重新进行设计,改进了原用C语言实现的船舶航迹自动舵.航迹保持算法采用间接式算法,超出偏差带时采用多模态控制,使船舶回到偏差带以内;航向保持采用常规PID控制算法.仿真结果表明,风力7级时,在超出偏差带或转向时船舶均能自动回到预定航线上,最大航迹偏差为2 n mile.采用VC实现的航迹自动舵可满足航海模拟器的功能要求.
文摘In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and strong coupled, an approach is used to divide it into two subsystems. One is to control the heading and the track error on the horizontal plane. The other is to control the pitch and the track error on the vertical plane. The results of computer simulation show that the autopilot works properly, it can capture the current waypoint and turns to track the next path automatically.