Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the sta...Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the staircase effect and preserve the edges when textures of image are extracted, a new image decomposition model is proposed in this paper. The proposed model is based on the to-tal generalized variation method which involves and balances the higher order of the structure. We also derive a numerical algorithm based on a primal-dual formulation that can be effectively imple-mented. Numerical experiments show that the proposed method can achieve a better trade-off between noise removal and texture extraction, while avoiding the staircase effect efficiently.展开更多
基金supported by the National Natural Science Foundation of China(6127129461301229)+1 种基金the Doctoral Research Fund of Henan University of Science and Technology(0900170809001751)
文摘Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the staircase effect and preserve the edges when textures of image are extracted, a new image decomposition model is proposed in this paper. The proposed model is based on the to-tal generalized variation method which involves and balances the higher order of the structure. We also derive a numerical algorithm based on a primal-dual formulation that can be effectively imple-mented. Numerical experiments show that the proposed method can achieve a better trade-off between noise removal and texture extraction, while avoiding the staircase effect efficiently.