The solidification microstructure has an important effect on the mechanical properties of castings. Therefore, an FE (Finite Element) - CA (Cellular Automaton) coupling model was developed for the simulation of so...The solidification microstructure has an important effect on the mechanical properties of castings. Therefore, an FE (Finite Element) - CA (Cellular Automaton) coupling model was developed for the simulation of solidification structure during the continuous casting process of 72A tire cord steel. In the model, the effect of phase transformation (λ→γ→α) during solidification was considered based on a thermodynamic database. The effect of electromagnetic stirring (EMS) was determined by increasing both the thermal conductivity and crystal formation rate in the liquid phase. The results show that the cooling curves and solidification structure calculated by this model agree well with the experimental results. The optimum pouring temperature range for tire cord steel casting was also discussed based on the present model. By comprehensive consideration of billet quality and smooth production, the pouring temperature should be controlled at about 1,495 ℃ under the casting conditions of the local plant in this study.展开更多
基金supported by the National Basic Research Program of China (grant No.2010CB630806)
文摘The solidification microstructure has an important effect on the mechanical properties of castings. Therefore, an FE (Finite Element) - CA (Cellular Automaton) coupling model was developed for the simulation of solidification structure during the continuous casting process of 72A tire cord steel. In the model, the effect of phase transformation (λ→γ→α) during solidification was considered based on a thermodynamic database. The effect of electromagnetic stirring (EMS) was determined by increasing both the thermal conductivity and crystal formation rate in the liquid phase. The results show that the cooling curves and solidification structure calculated by this model agree well with the experimental results. The optimum pouring temperature range for tire cord steel casting was also discussed based on the present model. By comprehensive consideration of billet quality and smooth production, the pouring temperature should be controlled at about 1,495 ℃ under the casting conditions of the local plant in this study.